Home
Class 12
MATHS
If A=[alphabetagamma-alpha] is such that...

If `A=[alphabetagamma-alpha]` is such that `A^2=I` , then `1+alpha^2+betagamma=0` (b) `1-alpha^2+betagamma=0` (c) `1-alpha^2-betagamma=0` (d) `1+alpha^2-betagamma=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(alpha,beta),(gamma,alpha):}] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

If A=[[alpha,beta],[gamma,alpha]] is such that A^2=I , then (A) 1+alpha^2+betagamma=0 (B) 1-alpha^2+betagamma=0 (C) 1-alpha^2-betagamma=0 (D) 1+alpha^2-betagamma=0

If A=[[alpha,betagamma,alpha]] is such that A^(2)=I, then (A)1+alpha^(2)+beta gamma=0(B)1-alpha^(2)+beta gamma,=0(C)1-alpha^(2)-beta gamma,=0(D)1+alpha^(2)-beta gamma=0

If A=[[alpha ,beta],[ gamma , -alpha]] is such that A^2=I , then A) 1+alpha^2+beta gamma=0 B) 1-alpha^2+beta gamma=0 C) 1-alpha^2-beta gamma=0^ D) 1+alpha^2-beta gamma=0

If A=([alpha,betagamma,-alpha])* such that A^(2)=I. prove that 1-alpha^(2)-beta gamma=0

If [alphabetagamma-alpha] is to be square root of two-rowed unit matrix, then alpha,betaa n dgamma should satisfy the relation. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0