Home
Class 11
MATHS
If 1+2x+3x^2+4x^3+oogeq4 , then least va...

If `1+2x+3x^2+4x^3+oogeq4` , then least value of `xi s1//2` greatest value of `xi s4/3` least value of `xi s2//3` greatest value of `x` does not exists

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^3+2x^(2)-3x+4=0 then the value of s_n ,is

Let f(x)=x^(2)-ax+3a-4 and g(a) be the least value of f(x) then the greatest value of g(a)

Let f(x) = cos^(2) x + cos x +3 then greatest value of f(x) + least value of f(x) is equal to

If x^3+2x^(2)-3x-1=0 then the value of S_(-4) is

Find least and greatest value of f(x)=e^(x2-4x+3) in [-5,5]

Find the greatest and least value of (x+2)/(2x^(2)+3x+6)

let 1+2x+3x^(2)+4x^(3)+.......+ the least value of x is lambda then lambda equals

If (6x^(2)-5x-3)/(x^(2)-2x+6)<=4 then least and highest values of 4x^(2) are :

AA x in R the greatest and the least values of y=(1)/(2)cos2x+sin x are respectively "