Home
Class 11
MATHS
Prove that .^(n-1) Pr+r .^(n-1) P(r-1) =...

Prove that `.^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If show that "^(n-1)P_r = (n-r).^(n-1)P_(r-1)

What is ""^(n-1)P_(r )+ ""^(n-1)P_(r-1) ?

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

Prove that ""^(n)P_(r )= ""^(n)C_(r )*^rP_(r ) .

Prove :nPr=n(n-1)P(r-1)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

11. Prove that nP_(r)=n(n-1)P_(r-1)

Prove that: (i) ""^(n)P_(n)=""^(n)P_(n-1) " (ii) "^(n)P_(r)=n* ""^(n-1)P_(r-1) " (iii) "^(n-1)P_(r)+r* ""^(n-1)P_(r-1)=""^(n)P_(r)