Home
Class 11
MATHS
Let Sn=sum(k=1)^(4n)(-1)(k(k+1))/2k^2dot...

Let `S_n=sum_(k=1)^(4n)(-1)(k(k+1))/2k^2dot` Then `S_n` can take value (s) `1056` b. `1088` c. `1120` d. `1332`

A

1056

B

1088

C

1120

D

1332

Text Solution

AI Generated Solution

To solve the problem, we need to find the value of the summation \( S_n = \sum_{k=1}^{4n} \frac{(-1)^k (k(k+1))}{2k^2} \). ### Step-by-step Solution: 1. **Rewrite the Summation**: We start with the expression for \( S_n \): \[ S_n = \sum_{k=1}^{4n} \frac{(-1)^k (k(k+1))}{2k^2} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/2)k^(2) . Then S_(n) can take values

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

If S(n)=sum_(k=1)^(n)(k)/(k^(4)+(1)/(4)), then (221S(10))/(10) is equal to:

Let S_(n)=sum_(r=1)^(oo)(1)/(n^(r)) and sum_(n=1)^(k)(n-1)S_(n)=5050, then k=

Let f(n)=(sum_(r=1)^(n)((1)/(r)))/(sum_(k=1)^(n)(k)/(2n-2k+1)(2n-k+1))