Home
Class 11
MATHS
Let p1,p2,...,pn and x be distinct real...

Let `p_1,p_2,...,p_n and x ` be distinct real number such that `(sum_(r=1)^(n-1)p_r^2)x^2+2(sum_(r=1)^(n-1)p_r p_(r+1))x+sum_(r=2)^n p_r^2 lt=0` then `p_1,p_2,...,p_n` are in G.P. and when `a_1^2+a_2^2+a_3^2+...+a_n^2=0,a_1=a_2=a_3=...=a_n=0` Statement 2 : If `p_2/p_1=p_3/p_2=....=p_n/p_(n-1),` then `p_1,p_2,...,p_n` are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p_(1),p_(2),...,p_(n) and x be distinct real number such that (sum_(r=1)^(n-1)p_(r)^(2))x^(2)+2(sum_(r=1)^(n-1)p_(r)p_(r+1))x+sum_(r=2)^(n)p_(r)^(2)<=0 then p_(1),p_(2),...,p_(n) are in G.P.and when Statement 2: If (p_(2))/(p_(1))=(p_(3))/(p_(2))=...=(p_(n))/(p_(n-1)), then p_(1),p_(2),...,p_(n) are in G.P.

If p+q=1 then show that sum_(r=0)^(n)r^(2)C_(r)p^(r)q^(n-r)=npq+n^(2)p^(2)

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to

If p+q=1, then show that sum_(r=0)^(n)r^(n)C_(r)p^(r)q^(n-r)=npq+n^(2)p^(2)

Prove that .^(n-1)P_(r)+r.^(n-1)P_(r-1)=.^(n)P_(r)

What is ""^(n-1)P_(r )+ ""^(n-1)P_(r-1) ?

If a_1,a_2,….a_n are in H.P then (a_1)/(a_2+,a_3,…,a_n),(a_2)/(a_1+a_3+….+a_n),…,(a_n)/(a_1+a_2+….+a_(n-1)) are in

Three distinct numbers a_1 , a_2, a_3 are in increasing G.P. a_1^2 + a_2^2 + a_3^2 = 364 and a_1 + a_2 + a_3 = 26 then the value of a_10 if a_n is the n^(th) term of the given G.P. is:

If p+q=1, then value of sum_(r=0)^(n)r^(2)C(n,r)p^(r)q^(n-r) is (1)npq(2)np(1+q) (3) n^(2)p^(2)+npq(4)np^(2)+npq