Home
Class 11
MATHS
If S1,S2a n dS3 be respectively the sum...

If `S_1,S_2a n dS_3` be respectively the sum of n, 2n and 3n terms of a G.P., prove that `S_1(S_3-S_2)=(S_2-S_1)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(1),S_(2),S_(3) be respectively the sums of n,2n and 3n terms of a G.P.,prove that S_(1)(S_(3)-S_(2))=(S_(2)-S_(1))^(2)

If S_(1),S_(2) andS _(3) be respectively the sum of n,2n and 3n terms of a G.P.prove that S_(1)(S_(3)-S_(2))=(S_(2)-S_(1))^(2)

If S_(1),S_(2),S_(3) be respectively the sum of n,2n and 3n terms of a GP, then (S_(1)(S_(3)-S_(2)))/((S_(2)-S_(1))^(2)) is equal to

If S_(1),S_(2),S_(3) be respectively the sums of n,2n,3n terms of a G.P.,then prove that S_(1)^(2)+S_(2)^(2)=S_(1)(S_(2)+S_(3))

If S_1, S_2, S_3 are the sums to n, 2n, 3n terms respectively for a GP then prove that S_1,S_2-S_1,S_3-S_2 are in GP.

If S_(n) denotes the sum of n terms of a G.P., prove that: (S_(10)-S_(20))^(2)=S_(10)(S_(30)-S_(20))

If S_(1), S_(2), S_(3) are the sums of n, 2n, 3n terms respectively of an A.P., then S_(3)//(S_(2) - S_(1))-

Let the sum of n,2n,3n terms of an A.P.be S_(1),S_(2) and respectively,show that S_(3)=3(S_(2)-S_(1))

The sum of n,2n,3n terms of an A.P.are S_(1),S_(2),S_(3) respectively.Prove that S_(3)=3(S_(2)-S_(1))