Home
Class 12
MATHS
If n is a positive integer and Ck = .^nC...

If `n` is a positive integer and `C_k = .^nC_k` then find the value of `sum_(k=1)^n k^3 * (C_k/C_(k-1))^2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer and C_(k)=.^(n)C_(k) then find the value of sum_(k=1)^(n)k^(3)*((C_(k))/(C_(k-1)))^(2)

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) equals:

If n is a positive integer SC_(k)=^(n)C_(k), find the value of (sum_(k=1)^(n)(k^(3))/(n(n+1)^(2)*(n+2))((C_(k))/(C_(k)-1))^(2))^(-1)

If sum_(k=1)^(n)k=45, find the value of sum_(k=1)^(n)k^(3).

If sum_(k=1)^(n)k=210, find the value of sum_(k=1)^(n)k^(2).

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Evaluate : sum_(k=1)^n (2^k+3^(k-1))