Home
Class 12
MATHS
Find (dy)/(dx), when: e^(x)logy=sin^(-...

Find `(dy)/(dx)`, when:
`e^(x)logy=sin^(-1)x+sin^(-1)y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx where e^x logy = sin^(-1)x + sin^(-1)y

Find (dy)/(dx) , when: y=(sinx)^(x)+sin^(-1)sqrtx

Find (dy)/(dx) when : (cos x)^(y)=(sin y)^(x)

Find (dy)/(dx) , when y= x^(x) sin sqrt(x)

Find (dy)/(dx) , when: y=(sin^(-1)x)^(x)

Find dy/dx where e^x log y = sin^-1 x + sin^-1y

Find (dy)/(dx) , when y=e^(sin phi(x))

Find (dy)/(dx) when : x^(sin y)+y^(sinx)=1

Find (dy)/(dx) if y =e^(x) sin 2x

Find (dy)/(dx) , when y=e^(x sin x^(3))+(tan x)^(x)