Home
Class 12
MATHS
The value of the integral int(e^(5logx)-...

The value of the integral `int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx` is equal to (A) `x^2+c` (B) `x^3/3+c` (C) `x^2/2+c` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx

int(e^(7logx)-e^(6logx))/(e^(6logx)-e^(5logx))dx is:

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to

e^(x+2logx)

Evaluate: int (e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx