Home
Class 12
MATHS
[" (99) If "S(n)=sum(k=1)^(n)a(k)" and "...

[" (99) If "S_(n)=sum_(k=1)^(n)a_(k)" and "lim_(n rarr oo)a_(n)=a," then "lim_(n rarr oo)(S_(n+1)-S_(n))/(sqrt(sum_(k=1)^(n)k))" is equal to "],[[" (b) "a," (b) "a],[" (c) "sqrt(2)a," (d) "2a]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

Let be a sequence such that lim_(x rarr oo)a_(n)=0. Then lim_(n rarr oo)(a_(1)+a_(2)++a_(n))/(sqrt(sum_(k=1)^(n)k)), is

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

For n in N, let a_(n)=sum_(k=1)^(n)2k and b_(n)=sum_(k=1)^(n)(2k-1)* then lim_(n rarr oo)(sqrt(a)_(n)-sqrt(b_(n))) is equal to

Let u_(n)=sum_(k=1)^(n)(k) and v_(n)=sum_(k=1)^(n)(k-0.5) . Then lim_(n rarr oo)(sqrt(u_(n))-sqrt(v_(n))) equals

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

"lim_(n rarr oo)(1)/(n){sum_(r=1)^(n)e^((r)/(n))}=