Home
Class 12
MATHS
If veca, vecb, vecc are three non-zero, ...

If `veca, vecb, vecc` are three non-zero, non-coplanar vectors and `vecb_1=vecb-(vecb.veca)/|veca|^2veca, vecb_2=vecb+(vecb.veca)/|veca|^2veca` then which of the following is a set of mutually orthoonal vectors

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are three non-zero, non-coplanar vectors and vecb_(1) = vecb - (vecb.veca)/(|veca|_(2)) veca, vecb_(2) =vecb + (vecb.veca)/(|veca|^(2)) veca, vecc_(1) =vecc- (vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2)) vecb _(1), vecc _(2)=vecc- (vecc.veca)/(|veca|^(2))veca-(vecb_(1).vecc)/(|vecb_(1)|^(2)) vecb_(1), vecc_(3)=vecc-(vecc.veca)/(|vecc|^(2)) vecb _(1),vecc_(4)=vecc - (vecc. veca)/(|vecc|^(2)) veca + (vecb. vecc)/(|vecb|^(2)) vecb_(1), then the set of orthogonal vectors is :

If veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca, \ vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca, \ vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1), \ vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of mutually orthogonal vectors is

If veca , vecb and vecc are three non-zero, non- coplanar vectors and vecb_(1)=vecb-(vecb.veca)/(|veca|^(2))veca, \ vecb_(2)=vecb+(vecb.veca)/(|veca|^(2))veca, \ vecc_(1)=vecc-(vecc.veca)/(|veca|^(2))veca+ (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(2)=vecc-(vecc.veca)/(|veca|^(2)) veca-(vecbvecc)/(|vecb_(1)|^(2))vecb_(1), \ vecc_(3)=vecc- (vecc.veca)/(|vecc|^(2))veca + (vecb.vecc)/(|vecc|^(2))vecb_(1), vecc_(4)=vecc - (vecc.veca)/(|vecc|^(2))veca= (vecb.vecc)/(|vecb|^(2))vecb_(1) , then the set of mutually orthogonal vectors is

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to