Home
Class 12
MATHS
Let h(x)=6^((3x^(3)+8x)) .Find h'(x)...

Let `h(x)=6^((3x^(3)+8x))` .Find `h'(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let h(x)=min(x,x^(2)),x in R, then h(x) is

Let f(x)=(9^(x))/(9^(x)+3) Let h(x)=intf(x)dx . If h(log_(9)6)=1 , then h(x)=

Let f(x)=8x^(3)-6x^(2)-2x+1, then

Let f be a twice differentiable function such that f''(x)=-f(x), and f'(x)=g(x),h(x)=[f(x)]^(2)+[g(x)]^(2) Find h(10) if h(5)=11

Let f(x) = 40 (3x^(4) + 8x^(3) - 18x^(2) + 60) , consider the following statement about f(x) .

f(x)=x^(3), find (f(x+h)-f(x))/(h)

Let f:R to R and h:R to R be differentiable functions such that f(x)=x^(3)+3x+2,g(f(x))=x and h(g(g(x)))=x for all x in R . Then, h'(1) equals.

Let f(x)=(1)/(1-x),g(x)= fofofofofofof (x) and h(x)=tan^(-1)(g(-x^(2)-x)) then find lim_(x rarr oo)sum h(r)