Home
Class 11
PHYSICS
A particle moves along the parabolic pat...

A particle moves along the parabolic path `y=ax^(2)` in such a The accleration of the particle is:

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle moves along a parabolic path y=-9x^(2) in such a way that the x component of velocity remains constant and has a value 1/3m//s . Find the instantaneous acceleration of the projectile (in m//s^(2) )

A particle moves along a parabolic path y=-9x^(2) in such a way that the x component of velocity remains constant and has a value 1/3m//s . Find the instantaneous acceleration of the projectile (in m//s^(2) )

A particle moves along a parabolic parth y = 9x^(2) in such a way that the x-component of velocity remains constant and has a value 1/3 ms ^(-1) . The acceleration of the particle is -

A particle moves along a parabolic parth y = 9x^(2) in such a way that the x-component of velocity remains constant and has a value 1/3 ms ^(-1) . The acceleration of the particle is -

A particle moves along the parabolic path x = y^2 + 2y + 2 in such a way that Y-component of velocity vector remains 5ms^(-1) during the motion. The magnitude of the acceleration of the particle is

A particle moves along the parabolic path x = y^2 + 2y + 2 in such a way that Y-component of velocity vector remains 5ms^(-1) during the motion. The magnitude of the acceleration of the particle is

A particle is moving along a circular path of radius of R such that radial acceleration of particle is proportional to t^(2) then