Home
Class 11
MATHS
Let Ssub(0,pi) denote the set of values ...

Let `Ssub(0,pi)` denote the set of values of `x` satisfying the equation `8^1+|cos x|+cos^2x+|cos^(3x| tooo)=4^3` . Then, `S=` `{pi//3}` b. `{pi//3,""2pi//3}` c. `{-pi//3,""2pi//3}` d. `{pi//3,""2pi//3}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of x in(-pi,pi) which satisfy the equation 8^((1+|cos x|+cos^(2)x|+cos^(2)x|+...))=4^(3)

The solution of the equation 8^(1+|cosx|+|cos^2x|+|cos^3x|+.........) = 4^3 in the interval (-pi,pi)

The smallest positive x satisfying the equation log_(cos x)sin x+log_(sin x)cos x=2 is (pi)/(2)(b)(pi)/(3)(c)(pi)/(4)(d)(pi)/(6)

The value of theta satisfying the given equation cos theta+sqrt(3)sin theta=2, is (A) (pi)/(3)(B)(5 pi)/(3)(C)(2 pi)/(3) (D) (4 pi)/(3)

The sum ofall the solutions ofthe equation cos((pi)/(3)+x)*cos((pi)/(3)-x)=(1)/(4)x in[0,6 pi]

The variable x satisfying the equation |sin x cos x|+sqrt(2+tan^(2)+cot^(2)x)=sqrt(3) belongs to the interval [0,(pi)/(3)](b)((pi)/(3),(pi)/(3))(c)[(3 pi)/(4),pi] (d) none-existent

The number of solutions of the equation 1+cos x+cos2x+sin x+sin2x+sin3x=0 which satisfy the condition (pi)/(2)<|3x-(pi)/(2)|<=pi is