Home
Class 11
MATHS
The sum of series x/(1-x^2)+(x^2)/(1-x^4...

The sum of series `x/(1-x^2)+(x^2)/(1-x^4)+(x^4)/(1-x^8)+` to infinite terms, if `|x|<1,` is `x/(1-x)` b. `1/(1-x)` c. `(1+x)/(1-x)` d. `1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

If the sum of the series 1+(2)/(x)+(4)/(x^(2))+(8)/(x^(3))+....oo is finite number,

If the sum of the series 1+(2)/(x)+(4)/(x^(2))+(8)/(x^(3))+....oo is finite number

The sum of the series (1)/(2)x^(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+... is :

Find the sum of the series 1+2^(2)x+3^(2)x^(2)+4^(2)x^(3)+"...."" upto "infty|x|lt1 .

For x>0 the sum of the series (1)/(1+x)-(1-x)/((1+x)^(2))+((1-x)^(2))/((1+x)^(3))-...oo is equal to

The sum of n terms of the series (1)/(1 + x) + (2)/(1 + x^(2)) + (4)/(1 + x^(4)) + ……… is