Home
Class 11
MATHS
Eight cards bearing number 1, 2, 3, 4, 5...

Eight cards bearing number `1, 2, 3, 4, 5, 6,7, 8` are well shuffled. Then in how many cases the top 2 cards will form a pair of twin prime equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1+x_2+x_3 is odd is The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1+x_2+x_3 is odd is The probability that x_1, x_2, x_3 are in an aritmetic progression is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1+x_2+x_3 is odd is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1+x_2+x_3 is odd is

Box 1 contains three cards bearing numbers 1, 2, 3; box 2 contains five cards bearing numbers 1, 2, 3,4, 5; and box 3 contains seven cards bearing numbers 1, 2, 3, 4, 5, 6, 7. A card is drawn from each of the boxes. Let x_i be the number on the card drawn from the ith box, i = 1, 2, 3. The probability that x_1+x_2+x_3 is odd is