Home
Class 10
MATHS
If alpha and beta are zeroes of the poly...

If `alpha` and `beta` are zeroes of the polynomial `3x^(2)+6x+1`, then find the value of `alpha+beta+alpha beta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha + \beta + \alpha \beta \) where \( \alpha \) and \( \beta \) are the zeroes of the polynomial \( 3x^2 + 6x + 1 \). ### Step 1: Identify coefficients The polynomial is in the form \( ax^2 + bx + c \), where: - \( a = 3 \) - \( b = 6 \) - \( c = 1 \) ### Step 2: Calculate \( \alpha + \beta \) Using the formula for the sum of the roots of a quadratic polynomial, we have: \[ \alpha + \beta = -\frac{b}{a} \] Substituting the values of \( b \) and \( a \): \[ \alpha + \beta = -\frac{6}{3} = -2 \] ### Step 3: Calculate \( \alpha \beta \) Using the formula for the product of the roots of a quadratic polynomial, we have: \[ \alpha \beta = \frac{c}{a} \] Substituting the values of \( c \) and \( a \): \[ \alpha \beta = \frac{1}{3} \] ### Step 4: Calculate \( \alpha + \beta + \alpha \beta \) Now, we can find \( \alpha + \beta + \alpha \beta \): \[ \alpha + \beta + \alpha \beta = (-2) + \left(\frac{1}{3}\right) \] To add these, we need a common denominator. The common denominator of 1 and 3 is 3: \[ -2 = -\frac{6}{3} \] So, \[ \alpha + \beta + \alpha \beta = -\frac{6}{3} + \frac{1}{3} = -\frac{6 - 1}{3} = -\frac{5}{3} \] ### Final Answer Thus, the value of \( \alpha + \beta + \alpha \beta \) is: \[ \boxed{-\frac{5}{3}} \]

To solve the problem, we need to find the value of \( \alpha + \beta + \alpha \beta \) where \( \alpha \) and \( \beta \) are the zeroes of the polynomial \( 3x^2 + 6x + 1 \). ### Step 1: Identify coefficients The polynomial is in the form \( ax^2 + bx + c \), where: - \( a = 3 \) - \( b = 6 \) - \( c = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|4 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer Questions|11 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are zeroes of the polynomial 3x^(2)-7x+1 then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are zeroes of polynomial p(x) = x^(2) - 5x +6 , then find the value of alpha + beta - 3 alpha beta

If alpha, beta are zeroes of polynomial 6x^(2) +x-1 , then find the value of (i) alpha^(3) beta + alpha beta^(3) , (ii) alpha/beta + beta/alpha +2(1/alpha + 1/beta) + 3 alpha beta

If alpha and beta are the zeroes of the polynomial 2x^(2)-4x+5 find the value of alpha^(2)+beta^(2)

If alpha and beta are the zeroes of the polynomial p(x)=3x^(2)-14x+15 .find the value of alpha^2+beta^2

If alpha and beta be the zeros of the polynomial x^(2)+x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpah and beta are the zeros of the polynomial 2x^(2)+7x+5 , write the value of alpha+beta+alpha beta .

If alpha and beta are the zeroes of the polynomial f(x) = 5x^(2) - 7x + 1 , then find the value of ((alpha)/(beta) + (beta)/(alpha)) .

If alpha and beta are zeroes of the quadratic polynomial p(x)=6x^(2)+x-1, then find the value of (alpha)/(beta)+(beta)/(alpha)+2((1)/(alpha)+(1)/(beta))+3 alpha beta