Home
Class 11
MATHS
Convert the following recurring decimals...

Convert the following recurring decimals into rational numbers :
(i) `0.4overset(cdot)3overset(cdot)7` (ii) `1.7overset(cdot)2overset(cdot)3`
(iii) `0.overset(cdot)2overset(cdot)3overset(cdot)1` (iv) `0.4overset(cdot)5overset(cdot)6`

Text Solution

Verified by Experts

The correct Answer is:
(i) `(433)/(990)` (ii) `(853)/(495)` (iii) `(77)/(333)` (iv)`(226)/(495)`

N/a
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN|Exercise Exercise 9I|8 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN|Exercise Exercise 9J|13 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN|Exercise Exercise 9G|17 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|12 Videos
  • SETS

    NAGEEN PRAKASHAN|Exercise MISC Exercise|16 Videos

Similar Questions

Explore conceptually related problems

Convert the recurrings decimal 3.5overset(•)2 into a rational number.

H_(3)overset(4)C-overset(O)overset(||)overset(3" ")(C)-overset(2)CH_(2)-overset(O)overset(||)overset(1" ")(C)-OH

Arrange the following free radicals in order of stability underset(I)underset()((CH_(3))_(3)overset(cdot)C)" "underset(II)underset()((CH_(3))_(2)overset(cdot)CH)" "underset(III)underset()(CH_(3)overset(cdot)CH_(2))" "underset(IV)underset()(overset(cdot)CH_(3))

If the vectors -overset(^)i+3overset(^)j+2overset(^)k,-4overset(^)i+2overset(^)j-2overset(^)kand 5overset(^)i+lambdaoverset(^)j+muoverset(^)k are collinear then

If the vectors 2overset(^)i-overset(^)j+overset(^)k,overset(^)i+2overset(^)j-3overset(^)k and 3overset(^)i+lambdaoverset(^)j+5overset(^)k be coplanar, then lambda=

The stability of carbanions in the following (i) RC-=overset(-)overset(..)C , (ii) (iii) R_(2)C=overset(-)overset(..)CH , (iv) R_(3)C-overset(-)overset(..)CH_(2) is in the order

Which H atom in the following ester is most acidic ? overset(1)(CH_(3))-overset(2)(CH_(2))-overset(O)overset(||)(C)-overset(3)(CH_(2))-overset(O)overset(||)(C)-O-overset(4)(CH_(2))overset(5)(CH_(3))