Home
Class 11
MATHS
Using binomial theorem, evaluate : (101)...

Using binomial theorem, evaluate : `(101)^4`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(101)^(4)=(100+1)^(4)`
`=^(5)C_(0)(100)^(4)(1)^(0)+^(4)C_(1)(100)^(3)(1)^(1)`
`+^(4)C_(2)(100)^(2)(1)^(2)+^(4)C_(3)(100)^(1)(1)^(3)`
`+^(4)C_(4)(100)^(0)(1)^(4)`
`=^(4)C_(0)(100)^(4)+^(4)C_(1)(100)^(3).1+^(4)C_(2)(100)^(2).1`
`+^(4)C_(3)(100).1+^(4)C_(4)1.1`
`=(1xx100000000)+(4xx1000000xx1)`
`+ (6xx 10000xx1)+(4xx100xx1)`
`+(6xx10000xx1)+(4xx100xx1)+(1xx1xx1)`
`=100000000+4000000+60000+400+1`
`=104060401`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Exericse 8.2|24 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exericse|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Exercise 8F|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem,evaluate: (102)^(5)

Byusing binomial theorem evaluate (i) (101)^(3) , (ii) (47)^(4)

Using binomial theorem,evaluate: (96)^(3)

Using binomial theorem,evaluate: (99)^(5)

Using the binomial theorem,evaluate (102)^(5)

Byusing binomial theorem evaluate (i) (107)^(5) , (ii) (55)^(3)

Using Binomial theorem, evaluate (0.99)^15 correct to fur places of decimal.

Using binomial theorem, find the value of (103)^(4) .

Using binomial theorem, prove that (101)^(50) gt(100^(50)+99^(50)).

Using binomial theorem, evaluate each of the following: (i) (104)^(4) (ii) (98)^(4) (iii) (1.2)^(4)