Home
Class 11
MATHS
Prove that Sigma(r=0)^(n) 3^(r)""^(n)C(r...

Prove that `Sigma_(r=0)^(n) 3^(r)""^(n)C_(r)=4^(n)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`L.H.S =overset(n)underset(r=0)(Sigma).^(n)C_(r).3^(r)=^(n)C_(0).3^(0)+^(n)C_(1).3^(1)`
`+^(n)C_(2).3^(2)+......+^(n)C_(2).3^(n)`
`=(1+3)^(n)=4^(n)=R.H.S` Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Exericse 8.2|24 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exericse|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN|Exercise Exercise 8F|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , prove that Sigma_(r=0)^(n)""^(n)C_(r)a^(r)b^(n-r) cos ( r B-(n-r)A)=c^(n) .

Prove that sum_(r=0)^(n)3^(rn)C_(r)=4^(n)

Prove that sum_(r=0)^(n)nC_(r)3^(r)=4^(n)

Prove that sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

prove that sum_(r=0)^(n)3^(r)nC_(r)=4^(n)