Home
Class 12
MATHS
R1={(a ,\ a),\ (a ,\ b),\ (a ,\ c),\ (b ...

`R_1={(a ,\ a),\ (a ,\ b),\ (a ,\ c),\ (b ,\ b),\ (b ,\ c),\ (c ,\ a),\ (c ,\ b),\ (c ,\ c)}` is defined on set `A={a ,\ b ,\ c}` . Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

Promotional Banner

Similar Questions

Explore conceptually related problems

R={(b , c)} is defined on set A={a ,\ b ,\ c} . Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

R_2={(a ,\ a)} is defined on set A={a ,\ b ,\ c} . Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

R_(3)={(b,c)} is defined on set A={a,b,c}. Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

R_(2)={(a,a)} is defined on set A={a,b,c}. Find whether or not it is (i) reflexive (ii) symmetric (iii) transitive.

R={(b,c)} is defined on set A={a,b,c}. State whether or not R is symmetric

R={(b,c)} is defined on set A={a,b,c}. State whether or not R is transitive

Let R={(a ,\ a),\ (b ,\ b),\ (c ,\ c),\ (a ,\ b)} be a relation on set A={a ,\ b ,\ c} . Then, R is (a) identity relation (b) reflexive (c) symmetric (d) equivalence

Let R={(a ,\ a),\ (b ,\ b),\ (c ,\ c),\ (a ,\ b)} be a relation on set A={a ,\ b ,\ c} . Then, R is (a) identity relation (b) reflexive (c) symmetric (d) equivalence

Three relations R_1, R_2a n dR_3 are defined on set A={a , b , c} as follow: R_1={(a , a),(a , b),(a , c),(b , b),(b , c),(c , a),(c , b),(c , c)} R_2={(a , b),(b , a),(a , c),(c , a)} R_3={(a , b),(b , c),(c , a)} Find whether each of R_1, R_2,R_3 is reflexive, symmetric and transitive.

Three relations R_1, R_2a n dR_3 are defined on set A={a , b , c} as follow: R_1={(a , a),(a , b),(a , c),(b , b),(b , c),(c , a),(c , b),(c , c)} R_2={(a , b),(b , a),(a , c),(c , a)} R_3={(a , b),(b , c),(c , a)} Find whether each of R_1, R_2,R_3 is reflexive, symmetric and transitive.