Home
Class 12
MATHS
if 2A +B=[{:(5,-1),(3,2):}]and A-2B =...

if ` 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}]` then find the matrices A and B .

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the matrices \( A \) and \( B \) given the equations: 1. \( 2A + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} \) (Equation 2) we will follow these steps: ### Step 1: Multiply Equation 1 by 2 We start by multiplying the entire Equation 1 by 2: \[ 2(2A + B) = 2 \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \] This gives us: \[ 4A + 2B = \begin{pmatrix} 10 & -2 \\ 6 & 4 \end{pmatrix} \tag{Equation 3} \] ### Step 2: Add Equation 2 to Equation 3 Next, we add Equation 2 to Equation 3: \[ (4A + 2B) + (A - 2B) = \begin{pmatrix} 10 & -2 \\ 6 & 4 \end{pmatrix} + \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} \] This simplifies to: \[ 5A + 0B = \begin{pmatrix} 11 & -6 \\ 6 & 9 \end{pmatrix} \] ### Step 3: Solve for Matrix A From the equation \( 5A = \begin{pmatrix} 11 & -6 \\ 6 & 9 \end{pmatrix} \), we can solve for \( A \): \[ A = \frac{1}{5} \begin{pmatrix} 11 & -6 \\ 6 & 9 \end{pmatrix} = \begin{pmatrix} \frac{11}{5} & -\frac{6}{5} \\ \frac{6}{5} & \frac{9}{5} \end{pmatrix} \] ### Step 4: Substitute A back into Equation 1 to find B Now that we have \( A \), we substitute it back into Equation 1 to find \( B \): \[ 2A + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \] Calculating \( 2A \): \[ 2A = 2 \begin{pmatrix} \frac{11}{5} & -\frac{6}{5} \\ \frac{6}{5} & \frac{9}{5} \end{pmatrix} = \begin{pmatrix} \frac{22}{5} & -\frac{12}{5} \\ \frac{12}{5} & \frac{18}{5} \end{pmatrix} \] Now, substituting \( 2A \) into the equation: \[ \begin{pmatrix} \frac{22}{5} & -\frac{12}{5} \\ \frac{12}{5} & \frac{18}{5} \end{pmatrix} + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \] ### Step 5: Solve for B To find \( B \), we rearrange the equation: \[ B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} \frac{22}{5} & -\frac{12}{5} \\ \frac{12}{5} & \frac{18}{5} \end{pmatrix} \] Calculating \( B \): \[ B = \begin{pmatrix} 5 - \frac{22}{5} & -1 + \frac{12}{5} \\ 3 - \frac{12}{5} & 2 - \frac{18}{5} \end{pmatrix} = \begin{pmatrix} \frac{25}{5} - \frac{22}{5} & -\frac{5}{5} + \frac{12}{5} \\ \frac{15}{5} - \frac{12}{5} & \frac{10}{5} - \frac{18}{5} \end{pmatrix} \] This simplifies to: \[ B = \begin{pmatrix} \frac{3}{5} & \frac{7}{5} \\ \frac{3}{5} & -\frac{8}{5} \end{pmatrix} \] ### Final Result Thus, the matrices \( A \) and \( B \) are: \[ A = \begin{pmatrix} \frac{11}{5} & -\frac{6}{5} \\ \frac{6}{5} & \frac{9}{5} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{3}{5} & \frac{7}{5} \\ \frac{3}{5} & -\frac{8}{5} \end{pmatrix} \]

To solve for the matrices \( A \) and \( B \) given the equations: 1. \( 2A + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} \) (Equation 2) we will follow these steps: ### Step 1: Multiply Equation 1 by 2 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3b|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A and B are two matrices such that A + B = [{:(3, 8),(11, 6):}] " and " A-B = [{:(5, 2),(-3, -6):}] , then find the matrices A and B.

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

If A+B^T=[(1,3),(4,5)] and A^T-B=[(7,8),(-1,3)] , then find matrices A and B.

If A=[{:(2,1),(0,4):}]" and B=[{:(3,4,5),(1,2,3):}] then A and B are matrices of order 2xx2 and 2xx3 respectively.

If A-B^(T){:[(2,3,4,-1),(0,3,-1,5)]:}andA^(T)+B={:[(5,3),(1,0),(2,5),(3,-1)]:} , then find the matrices A and B.

If 2A+3B=[(2,-1,4),(3,2,5)] and A+2B=[(5,0,3),(1,6,2)] , then B is

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[{:(2,-3),(4," "5):}]" and "B=[{:(-1,2),(0,3):}] , find a matrix X such that A+2B+X=O.