Home
Class 12
MATHS
If theta-phi=pi/2, prove that, [(cos^2 t...

If `theta-phi=pi/2,` prove that, `[(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`L.H.S=[{:("cos"^(2)theta,costhetasintheta),(costheta sin theta,sin ^(2)theta):}][{:("cos"^(2)phi, cos phi sinphi),("cos" phisin phi ,sinphi):}]`
`=[{:(cos^(2)theta cos^(2)theta phi cosphi sintheta sinphi" "),(" "cos^(2)thetacosphisin +costhetasinthetasin^(2)phi),(costhetacos^(2)phisintheta+sin^(2)cosphi sinphi),(" "cos theta sin theta cosphi sinphi +sin^(2)thetasin^(2)phi):}]`
`=[{:(costheta cos phi( cos phi +sin theta sin phi )),(" "cos theta sin phi (costheta cos phi +sinthetasin phi)),(cosphisintheta(costhetacos phi +sintheta sin phi)),(" "sinthetasin phi (costhetacosphi +sintheta sinphi)):}]`
`=[{:(costheta cosphi .cos(theta-phi),costhetasin phi cos (theta-phi)),(cosphi sin theta.cos (theta-phi),sinthetasinphicos(theta-phi)):}]`
`=[{:(cos thetacos phi.cospi//2,costhetasinphi.cospi//2),(cosphisintheta.cospi//2,sinthetasinphi.cospi//2):}]`
`[{:(0,0),(0,0):}]=O=R.H.S.` hence proved
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3b|12 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If theta-phi=pi/2, then show that [[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]]*[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]]=0

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasintheta,sin^2theta]] and B=[[cos^2phi,cosphisinphi],[cosphisinphi,sin^2phi]] then theta-phi is

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

If A=[[cos theta, sin theta],[sin theta, cos theta]],B=[[cos phi, sin phi],[sin phi, cos phi]] show that AB=BA.