Home
Class 12
MATHS
find the inverse of the following mat...

find the inverse of the following matrix : `[{:(1,-1),(2,3):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \(\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}\), we will follow these steps: ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \). ### Step 2: Calculate the Determinant The determinant of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix: - \(a = 1\) - \(b = -1\) - \(c = 2\) - \(d = 3\) Calculating the determinant: \[ \text{det}(A) = (1)(3) - (-1)(2) = 3 + 2 = 5 \] ### Step 3: Verify the Determinant Since \(\text{det}(A) = 5\) which is not equal to 0, the inverse of the matrix exists. ### Step 4: Find the Adjoint of the Matrix The adjoint of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix: \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] ### Step 5: Calculate the Inverse The inverse of the matrix \(A\) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we calculated: \[ A^{-1} = \frac{1}{5} \cdot \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} \] This results in: \[ A^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \] ### Final Answer The inverse of the matrix \(\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}\) is: \[ A^{-1} = \begin{pmatrix} \frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{pmatrix} \]

To find the inverse of the matrix \(\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}\), we will follow these steps: ### Step 1: Define the Matrix Let \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \). ### Step 2: Calculate the Determinant The determinant of a \(2 \times 2\) matrix \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3f|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3c|9 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the following matrix [[1,00,1]]

Using elementary transformations, find the inverse of the following matrix [(2,-1,4),(4,0,2),(3,-2,7)]

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

Find the inverse of the matrix [{:(-1,1,2),(1,2,3),(3,1,1):}]

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

Find the inverse of the matrix A=[{:(1,3,3),(1,4,3),(1,3,4):}] by using column transformations.

Find the inverse of the matrix A = [{:(2, -4), (3, -5):}] .

Find the inverse of the matrix {:((1,0,1),(0,2,3),(1,2,1)):} by using elementary column transformations .

By using elementary row operations, find the inverse of the matrix A=[{:(3,-1,-2),(2,0,-1),(3,-5," "0):}].