Home
Class 12
MATHS
if A=[{:(3,1),(-1,2):}],show that A^(2)...

`if A=[{:(3,1),(-1,2):}],`show that `A^(2)-5A+7I=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 5A + 7I = 0 \) for the matrix \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ 3 \cdot 3 + 1 \cdot (-1) = 9 - 1 = 8 \] - First row, second column: \[ 3 \cdot 1 + 1 \cdot 2 = 3 + 2 = 5 \] - Second row, first column: \[ -1 \cdot 3 + 2 \cdot (-1) = -3 - 2 = -5 \] - Second row, second column: \[ -1 \cdot 1 + 2 \cdot 2 = -1 + 4 = 3 \] Thus, we have: \[ A^2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Next, we calculate \( 5A \): \[ 5A = 5 \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} \] ### Step 3: Calculate \( 7I \) The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, we have: \[ 7I = 7 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] ### Step 4: Combine the results Now we can substitute \( A^2 \), \( 5A \), and \( 7I \) into the expression \( A^2 - 5A + 7I \): \[ A^2 - 5A + 7I = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} \] Calculating this step-by-step: 1. First, calculate \( A^2 - 5A \): \[ \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} = \begin{pmatrix} 8 - 15 & 5 - 5 \\ -5 - (-5) & 3 - 10 \end{pmatrix} = \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} \] 2. Now add \( 7I \): \[ \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} -7 + 7 & 0 + 0 \\ 0 + 0 & -7 + 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Conclusion Thus, we have shown that: \[ A^2 - 5A + 7I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This is the zero matrix, confirming that \( A^2 - 5A + 7I = 0 \).

To solve the problem, we need to show that \( A^2 - 5A + 7I = 0 \) for the matrix \( A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If =[31-12], show that A^(2)-5A+7I_(2)=O

If A=[31-12], show that A^(2)-5A+7I_(2)=O

If A=[(5,3),(12,7)] , show that A^(2)-12A-I=0 . Hence find A^(-1) .

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)