Home
Class 12
MATHS
find x, if [x" "-5" "-1][{:(1,0,2),(0...

find x, if
`[x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we need to find the value of \( x \) in the equation: \[ [x, -5, -1] \cdot \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0 \] ### Step 1: Matrix Multiplication First, we will multiply the first matrix with the second matrix. The first matrix is: \[ A = \begin{bmatrix} x & -5 & -1 \end{bmatrix} \] The second matrix is: \[ B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \] We will calculate \( A \cdot B \): \[ A \cdot B = \begin{bmatrix} x & -5 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \] Calculating the elements: - First element: \( x \cdot 1 + (-5) \cdot 0 + (-1) \cdot 2 = x - 2 \) - Second element: \( x \cdot 0 + (-5) \cdot 2 + (-1) \cdot 0 = -10 \) - Third element: \( x \cdot 2 + (-5) \cdot 1 + (-1) \cdot 3 = 2x - 5 - 3 = 2x - 8 \) Thus, we have: \[ A \cdot B = \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \] ### Step 2: Multiply with the Third Matrix Now we multiply the result with the third matrix: \[ C = \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} \] Calculating \( (A \cdot B) \cdot C \): \[ \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \cdot \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} \] Calculating the elements: - First element: \( (x - 2)x + (-10) \cdot 4 + (2x - 8) \cdot 1 \) \[ = x^2 - 2x - 40 + 2x - 8 = x^2 - 48 \] ### Step 3: Set the Equation to Zero We set the result equal to zero: \[ x^2 - 48 = 0 \] ### Step 4: Solve for x Now we solve for \( x \): \[ x^2 = 48 \] \[ x = \pm \sqrt{48} = \pm 4\sqrt{3} \] ### Final Answer Thus, the values of \( x \) are: \[ x = 4\sqrt{3} \quad \text{or} \quad x = -4\sqrt{3} \] ---

To solve the equation given by the matrix multiplication, we need to find the value of \( x \) in the equation: \[ [x, -5, -1] \cdot \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0 \] ### Step 1: Matrix Multiplication First, we will multiply the first matrix with the second matrix. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

Solve the matrix equations: [(x,-5,-1)][(1, 0, 2) ,( 0,2 ,1),( 2, 0, 3)][(x),(4),( 1)]=0 (iv) [2x 3][(1, 2),(-3, 0)][(x),(8)]=0

If [{:(1, x, 1):}] [{:(1, 2,3),(0,5,1),(0,3,2):}] [{:(x), (1),(-2):}]=O, then x =

If [(1,x,1)][(1,3,2),(0,5,1),(0,3,2)][(x),(1),(-2)]=[0] then x is

Find x, if [x-5-1][[1,0,20,2,12,0,3]]][[x41]]=O

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

P=[{:(1,1,1),(0,2,2),(0,0,3):}]Q=[{:(2,x,x),(0,4,0),(x,x,6):}] and R=PQP^(-1) then which are correct

If 2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}] , find (x-y).