Home
Class 12
MATHS
If A=[alphabetagamma-alpha] is such that...

If `A=[alphabetagamma-alpha]` is such that `A^2=I` , then `1+alpha^2+betagamma=0` (b) `1-alpha^2+betagamma=0` (c) `1-alpha^2-betagamma=0` (d) `1+alpha^2-betagamma=0`

A

`1+alpha^(2)+betagamma =0`

B

`1-alpha^(2) +beta gamma =0`

C

`1-alpha^(2)-beta gamma=0`

D

`1+alpha^(2)-beta gamma =0`

Text Solution

Verified by Experts

The correct Answer is:
A

`A^(2) =I`
`implies [{:(alpha,beta),(gamma,-alpha):}][{:(alpha,beta),(gamma,-alpha):}]=I`
`implies[{:(alpha^(2)+betagamma,alphabeta-betaalpha),(gammaalpha -alphagamma,betagamma +alpha^(2)):}]=I`
`implies [{:(alpha^(2) +beta gamma ,0),(0, alpha^(2) +betagamma ):}]=[{:(1,0),(0,1):}]`
`alpha^(2) +beta gamma =1 implies 1-alpha^(2) -betagamma =0`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

If A=[[alpha,betagamma,alpha]] is such that A^(2)=I, then (A)1+alpha^(2)+beta gamma=0(B)1-alpha^(2)+beta gamma,=0(C)1-alpha^(2)-beta gamma,=0(D)1+alpha^(2)-beta gamma=0

If A=([alpha,betagamma,-alpha])* such that A^(2)=I. prove that 1-alpha^(2)-beta gamma=0

If [[alpha,betagamma,-alpha]] is to be square root of two-rowed unit matrix,then alpha,beta and gamma should satisfy the relation.1-alpha^(2)+beta gamma=0 b.alpha^(2)+beta gamma=0 c.1+alpha^(2)+beta gamma=0 d.1-alpha^(2)-beta gamma=0

Let A=[[alpha,betagamma,delta]] such that A^(3)=0, then sum of all the elements of A^(2) is

A=[[alpha,betagamma,delta]], then find Adj(A)

If alpha,beta,gamma are the roots of px^(2)+qx^(2)+r=0 then the value of the determinant det[[alpha beta,beta gamma,gamma alphabeta gamma,gamma alpha,alpha betagamma alpha,alpha beta,beta gamma]] is p b.q c.0 d.r

Let alpha, beta and gamma be the roots of equation x^(3)+x+1=0 , then (alpha beta(alpha+beta)+betagamma(beta+gamma)+gamma alpha(gamma+alpha))/(alpha^(2)+beta^(2)+gamma^(2)) is equal to

The equation of plane parallel to the plane x+y+z=0 and passing through (alpha, beta, gamma0 is (A) x+y+z=alpha+beta+gamma (B) x+y+z=alphabeta+betagamma+gammaalpha (C) x+y+z+alpha+beta+gamma=0 (D) none of these

A=[(1,0,0),(0,alpha,beta),(0,beta,alpha)] and abs(2A)^3=2^21 then find alpha (alpha, beta inI^+)