Home
Class 12
MATHS
Find the value of the "determinant" |{:...

Find the value of the `"determinant"`
` |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|`

A

`0`

B

`5`

C

`sqrt15`

D

`sqrt5`

Text Solution

Verified by Experts

`|{:(sqrt13+sqrt3,2sqrt5,sqrt5),(sqrt26+sqrt15,5,sqrt10),(sqrt65+3,sqrt15,5):}|`
`|{:(sqrt13,2sqrt5,sqrt5),(sqrt26+5,5,sqrt10),(sqrt65+3,sqrt15,5):}|+|{:(2sqrt3,2sqrt5,sqrt5),(sqrt15,5, sqrt10),(3,sqrt15,5):}|`
`sqrt13xxsqrt15xxsqrt5|{:(1,2,1),(sqrt2,sqrt5,sqrt2),(sqrt5,sqrt3,sqrt5):}|+sqrt3xxsqrt5xxsqrt5|{:(2,2,1),(sqrt5,sqrt5,sqrt2),(sqrt3,sqrt3,sqrt5):}|`
=0+0
=0.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4a|6 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4b|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}| .

The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5)| is equal to

(2sqrt3+sqrt5)(2sqrt3+sqrt5)

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

Find the value of determinant ,sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)sqrt((15))+sqrt((26)),5,sqrt((10))3+sqrt((65)),sqrt((15)),5]|

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)

Using the properties of detminants, evalulate. (i) |{:(,23,6,11),(,36,5,26),(,63,13,37):}| (ii) |{:(,sqrt13+sqrt3,2sqrt5,sqrt5),(,sqrt15+sqrt26,5,sqrt10),(,3+sqrt65,sqrt15,5):}|

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Simplify ((sqrt3+sqrt5)(sqrt5+sqrt2))/(sqrt2+sqrt3+sqrt5)

NAGEEN PRAKASHAN-DETERMINANTS-Miscellaneous Exercise
  1. Find the value of the "determinant" |{:(sqrt13+sqrt3,2sqrt5,sqrt5),(s...

    Text Solution

    |

  2. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  3. Show without expanding at any stage that: [a,a^2,bc],[b,b^2,ca],[c,c^...

    Text Solution

    |

  4. Evaluate abs[{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta...

    Text Solution

    |

  5. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  6. Solve the equation: |[x+a, b,c],[a,x+b,c],[a,b,x+c]|=0

    Text Solution

    |

  7. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  8. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  9. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  10. Evaluate: [[x,y,x+y],[y,x+y,x],[x+y,x,y]]

    Text Solution

    |

  11. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  12. Using peoperties of determinants in questions 11 to 15, prove that : ...

    Text Solution

    |

  13. Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (...

    Text Solution

    |

  14. Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot

    Text Solution

    |

  15. Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

    Text Solution

    |

  16. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  17. Solve the system of equations2/x+3/y+(10)/z=44/x-6/y+5/z=16/x+9/y-(20)...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  19. Choose the correct answer in questions 17 to 19: If x, y, z are non...

    Text Solution

    |

  20. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |