Home
Class 12
MATHS
If A=[{:(1,-1),(2,3):}], shown that A^(2...

If `A=[{:(1,-1),(2,3):}]`, shown that `A^(2)-44+5I=o`. Hence Find `A^(-1)`.

Text Solution

Verified by Experts

`A=[{:(1,-1),(2,3):}]`
`rArr" "A^(2)=A.A=[{:(1,-1),(2,3):}][{:(1,-1),(2,3):}]`
`[{:(1-2,-1-3),(2+6,-2+9):}]=[{:(-1,-4),(8,7):}]`
`"Now, L.H.S."=A^(2)-4A+5I`
`[{:(-1,-4),(8,7):}]-4[{:(-1,-1),(2,3):}]+5[{:(1,0),(0,1):}]`
`[{:(-1,-4),(8,7):}]-[{:(4,-4),(8,12):}]+[{:(5,0),(0,):}]`
`[{:(0,0),(0,0):}]=o=R.H.S.`
`"Now "|A|=|{:(1,-1),(2,3):}|=3-(-2)=5ne0`
therefore, `A^(-1)` exists.
`therefore" "A^(2)-4A+5I=0 `
`rArr A^(-1)(A^(2)-4A+5I)=A^(1).O`
`rArr" "A-4I+5A^(-1)=4I-A`
`=[{:(1,0),(0,1):}]-[{:(1,-1),(2,3):}]=[{:(3,1),(-2,1):}]`
`rArr=A^(-1)=1/5[{:(3,1),(-2,1):}].`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4a|6 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4b|26 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A=[(5,3),(12,7)] , show that A^(2)-12A-I=0 . Hence find A^(-1) .

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[31-12], show that A^(2)-5A+7I=O. Hence,find A^(-1)

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

NAGEEN PRAKASHAN-DETERMINANTS-Miscellaneous Exercise
  1. If A=[{:(1,-1),(2,3):}], shown that A^(2)-44+5I=o. Hence Find A^(-1).

    Text Solution

    |

  2. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  3. Show without expanding at any stage that: [a,a^2,bc],[b,b^2,ca],[c,c^...

    Text Solution

    |

  4. Evaluate abs[{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta...

    Text Solution

    |

  5. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  6. Solve the equation: |[x+a, b,c],[a,x+b,c],[a,b,x+c]|=0

    Text Solution

    |

  7. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  8. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  9. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  10. Evaluate: [[x,y,x+y],[y,x+y,x],[x+y,x,y]]

    Text Solution

    |

  11. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  12. Using peoperties of determinants in questions 11 to 15, prove that : ...

    Text Solution

    |

  13. Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (...

    Text Solution

    |

  14. Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot

    Text Solution

    |

  15. Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

    Text Solution

    |

  16. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  17. Solve the system of equations2/x+3/y+(10)/z=44/x-6/y+5/z=16/x+9/y-(20)...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  19. Choose the correct answer in questions 17 to 19: If x, y, z are non...

    Text Solution

    |

  20. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |