Home
Class 12
MATHS
Find the value of : |{:(1,x,yz),(1,y,zx...

Find the value of : `|{:(1,x,yz),(1,y,zx),(1,z,xy):}|`

A

xyz(x+y+z)

B

(x-y)(y-z)(z-x)

C

xyz(x-y)(y-z)(z-x)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & x & y z \\ 1 & y & z x \\ 1 & z & x y \end{vmatrix} \] we will follow these steps: ### Step 1: Subtract the first row from the second and third rows. We perform the row operations \( R_2 \rightarrow R_2 - R_1 \) and \( R_3 \rightarrow R_3 - R_1 \): \[ D = \begin{vmatrix} 1 & x & y z \\ 0 & y - x & z x - y z \\ 0 & z - x & x y - y z \end{vmatrix} \] ### Step 2: Simplify the determinant. Notice that the first column now has two zeros. We can factor out the common terms from the second and third rows. The determinant simplifies to: \[ D = 1 \cdot \begin{vmatrix} y - x & z x - y z \\ z - x & x y - y z \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinant. Now we compute the determinant of the 2x2 matrix: \[ \begin{vmatrix} y - x & z x - y z \\ z - x & x y - y z \end{vmatrix} = (y - x)(x y - y z) - (z x - y z)(z - x) \] ### Step 4: Expand the determinant. Expanding this gives: \[ (y - x)(x y - y z) = y^2 x - y^2 z - x^2 y + x y z \] \[ (z x - y z)(z - x) = z^2 x - z y z - x y z + x^2 y = z^2 x - y z^2 - x y z + x^2 y \] ### Step 5: Combine the results. Now we combine the results: \[ D = y^2 x - y^2 z - x^2 y + x y z - (z^2 x - y z^2 - x y z + x^2 y) \] ### Step 6: Simplify further. Combining like terms leads us to: \[ D = y^2 x - y^2 z - z^2 x + y z^2 + x y z - x^2 y + x^2 y - x y z \] ### Step 7: Factor the expression. The expression can be factored as: \[ D = (x - y)(y - z)(z - x) \] Thus, the value of the determinant is: \[ D = (x - y)(y - z)(z - x) \] ### Final Result: \[ \boxed{(x - y)(y - z)(z - x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4d|13 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4a|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(x,x^2-yz,1),(y,y^2-zy,1),(z,z^2-xy,1):}| is

Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=0 .

Let x,y,z be complex numbers such that x+y+z=2,x^(2)+y^(2)+z^(2)=3,xyz=4 Then the value of quad 1(1)/(xy+z-1)+(1)/(yz+x-1)+(1)/(zx+y-1) is

If tan^(-1)x+tan^(-1)y+tan^(-1)z=0 then the value of (1)/(xy)+(1)/(yz)+(1)/(zx)is(x,y,z!=0)

If x + y + z = 0 , then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(xy) is:

If a^(x)=b, b^(y)=c, c^(z)=a , then what is the value of (1)/((xy+yz+zx))((1)/(x)+(1)/(y)+(1)/(z)) ?

If x>y>z>0, then find the value of cot^(-1)(xy+1)/(x-y)+cot^(-1)(yz+1)/(zy-z)+cot^(-1)(zx+1)/(z-x)

Using Cofactors of elements of third column, evaluate Delta=det[[1,x,yz1,y,zx1,z,xy]]

If xy+yz+zx=1 , then the value of (1+y^(2))/((x+y)(y+z)) is

If x+y+z=8 and xy+yz+zx=20 find the value of x^(3)+y^(3)+z^(3)-3xyz

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4b
  1. Without expending, prove that : (i) |{:(b^(2)c^(2),bc,b+c),(c^(2)a^(...

    Text Solution

    |

  2. Prove that : |{:(x+a,x+2a,x+3a),(x+2a,x+3a,x+4a),(x+4a,x+5a,x+6a):}|=0

    Text Solution

    |

  3. Find the value of : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|

    Text Solution

    |

  4. The value of Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]] will be

    Text Solution

    |

  5. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

    Text Solution

    |

  6. Prove that : |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=a^(2)(3x+a)

    Text Solution

    |

  7. Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

    Text Solution

    |

  8. Prove that : |{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|

    Text Solution

    |

  9. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+a+2y):}|=2(x+y+)^(3)

    Text Solution

    |

  10. Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2)...

    Text Solution

    |

  11. Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(...

    Text Solution

    |

  12. Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a...

    Text Solution

    |

  13. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  14. Find the value of |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|

    Text Solution

    |

  15. Prove that : |{:(0,a-b,a-c),(b-a,0,b-c),(c-a,c-b,0):}|=0

    Text Solution

    |

  16. Find the value of x |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  17. (i) Solve the equation |{:(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-...

    Text Solution

    |

  18. Solve the equation |{:(x+a,c+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

    Text Solution

    |

  19. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 si (A...

    Text Solution

    |

  20. If 2 s=a+b+c, then show that : |{:(a^(2),(s-a)^(2),(s-a)^(2)),((s-b)^(...

    Text Solution

    |