Home
Class 12
MATHS
Solve the equation |{:(x+a,c+b,x+c),(x+b...

Solve the equation `|{:(x+a,c+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |{:(x+a,c+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x + a & x + b & x + c \\ x + b & x + c & x + a \\ x + c & x + a & x + b \end{vmatrix} \] ### Step 2: Apply Column Operations We can simplify the determinant using column operations. We will perform the operation \( C_1 \to C_1 + C_2 + C_3 \): \[ D = \begin{vmatrix} 3x + a + b + c & x + b & x + c \\ 3x + b + c + a & x + c & x + a \\ 3x + c + a + b & x + a & x + b \end{vmatrix} \] ### Step 3: Simplify the First Column Now, let's denote the first column as \( 3x + a + b + c \): \[ D = \begin{vmatrix} 3x + a + b + c & x + b & x + c \\ 3x + b + c + a & x + c & x + a \\ 3x + c + a + b & x + a & x + b \end{vmatrix} \] ### Step 4: Perform Row Operations Next, we will perform row operations \( R_2 \to R_2 - R_1 \) and \( R_3 \to R_3 - R_1 \): \[ D = \begin{vmatrix} 3x + a + b + c & x + b & x + c \\ 0 & (x + c) - (x + b) & (x + a) - (x + c) \\ 0 & (x + a) - (x + b) & (x + b) - (x + c) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 3x + a + b + c & x + b & x + c \\ 0 & c - b & a - c \\ 0 & a - b & b - c \end{vmatrix} \] ### Step 5: Expand the Determinant Now, we can expand the determinant along the first column: \[ D = (3x + a + b + c) \begin{vmatrix} c - b & a - c \\ a - b & b - c \end{vmatrix} \] ### Step 6: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ \begin{vmatrix} c - b & a - c \\ a - b & b - c \end{vmatrix} = (c - b)(b - c) - (a - c)(a - b) \] This simplifies to: \[ (c - b)(b - c) - (a - c)(a - b) = - (c - b)(c - b) + (a - c)(a - b) \] ### Step 7: Set the Determinant to Zero Setting the determinant \( D = 0 \): \[ (3x + a + b + c) \left[ (c - b)(b - c) - (a - c)(a - b) \right] = 0 \] ### Step 8: Solve for \( x \) This gives us two cases: 1. \( 3x + a + b + c = 0 \) 2. The second factor equals zero, which is a separate equation. From the first case: \[ 3x = - (a + b + c) \implies x = -\frac{1}{3}(a + b + c) \] ### Final Answer Thus, the solution to the equation is: \[ x = -\frac{1}{3}(a + b + c) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4d|13 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4a|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If a,b,c, in R, find the number of real root of the equation |{:(x,c,-b),(-c,x,a),(b,-a,x):}| =0

Solve the equation: |[x+a, b,c],[a,x+b,c],[a,b,x+c]|=0

If a+b+c=0, solve the equation: |[a-x, c, b],[c,b-x, a],[b, a, c-x]|=0

If a != b != c , are value of x which satisfies the equation |(0,x -a,x -b),(x +a,0,x -c),(x +b,x +c,0)| = 0 is given by

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

The value of x satisfying |{:(x-a,b,c),(a,x+b,c),(a,b,x+c):}|=0 is

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4b
  1. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

    Text Solution

    |

  2. Prove that : |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=a^(2)(3x+a)

    Text Solution

    |

  3. Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

    Text Solution

    |

  4. Prove that : |{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|

    Text Solution

    |

  5. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+a+2y):}|=2(x+y+)^(3)

    Text Solution

    |

  6. Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2)...

    Text Solution

    |

  7. Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(...

    Text Solution

    |

  8. Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a...

    Text Solution

    |

  9. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  10. Find the value of |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|

    Text Solution

    |

  11. Prove that : |{:(0,a-b,a-c),(b-a,0,b-c),(c-a,c-b,0):}|=0

    Text Solution

    |

  12. Find the value of x |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  13. (i) Solve the equation |{:(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-...

    Text Solution

    |

  14. Solve the equation |{:(x+a,c+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

    Text Solution

    |

  15. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 si (A...

    Text Solution

    |

  16. If 2 s=a+b+c, then show that : |{:(a^(2),(s-a)^(2),(s-a)^(2)),((s-b)^(...

    Text Solution

    |

  17. If the sides of a DeltaABC and a, b, c and |{:(a^(2),b^(2),c^(2)),((a+...

    Text Solution

    |

  18. If the pth, qth and rth terms of a G.P, are x,y and z repectively, the...

    Text Solution

    |

  19. Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+...

    Text Solution

    |

  20. Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

    Text Solution

    |