Home
Class 12
MATHS
Find the inverse of the following matric...

Find the inverse of the following matrices if exist :
(i) `|{:(5,-3),(2,2):}|`
(ii) `|{:(1,-3),(-1,2):}|`
(iii) `|{:(1,0,-1),(3,4,5),(0,-6,-7):}|`
(iv) `|{:(1,-3,3),(2,2,-4),(2,0,2):}|`
(v) `|{:(1,2,1),(1,-1,-2),(1,2,-1):}|`
(vi) `|{:(4,-2,-1),(1,1,-1),(-1,2,4):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrices, we will follow the steps outlined in the video transcript. The general approach involves calculating the determinant of the matrix first. If the determinant is non-zero, we can proceed to find the inverse using the appropriate formulas. ### (i) Matrix: \[ A = \begin{pmatrix} 5 & -3 \\ 2 & 2 \end{pmatrix} \] **Step 1: Calculate the determinant.** \[ \text{det}(A) = (5)(2) - (-3)(2) = 10 + 6 = 16 \] **Step 2: Since the determinant is non-zero, find the inverse.** The formula for the inverse of a 2x2 matrix is: \[ A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] where \( a = 5, b = -3, c = 2, d = 2 \). So, \[ A^{-1} = \frac{1}{16} \begin{pmatrix} 2 & 3 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} \frac{1}{8} & \frac{3}{16} \\ -\frac{1}{8} & \frac{5}{16} \end{pmatrix} \] ### (ii) Matrix: \[ B = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix} \] **Step 1: Calculate the determinant.** \[ \text{det}(B) = (1)(2) - (-3)(-1) = 2 - 3 = -1 \] **Step 2: Since the determinant is non-zero, find the inverse.** Using the same formula: \[ B^{-1} = \frac{1}{-1} \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -3 \\ -1 & -1 \end{pmatrix} \] ### (iii) Matrix: \[ C = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{pmatrix} \] **Step 1: Calculate the determinant.** Using the determinant formula for 3x3 matrices: \[ \text{det}(C) = 1 \cdot \text{det}\begin{pmatrix} 4 & 5 \\ -6 & -7 \end{pmatrix} - 0 + (-1) \cdot \text{det}\begin{pmatrix} 3 & 4 \\ 0 & -6 \end{pmatrix} \] Calculating the 2x2 determinants: \[ \text{det}\begin{pmatrix} 4 & 5 \\ -6 & -7 \end{pmatrix} = (4)(-7) - (5)(-6) = -28 + 30 = 2 \] \[ \text{det}\begin{pmatrix} 3 & 4 \\ 0 & -6 \end{pmatrix} = (3)(-6) - (4)(0) = -18 \] Thus, \[ \text{det}(C) = 1 \cdot 2 - 0 - (-1)(-18) = 2 - 18 = -16 \] **Step 2: Since the determinant is non-zero, find the inverse.** We will calculate the adjoint and then use it to find the inverse: 1. Calculate the cofactor matrix. 2. Transpose the cofactor matrix to get the adjoint. 3. Multiply by \( \frac{1}{\text{det}(C)} \). The final result for \( C^{-1} \) will be computed similarly as shown in the video. ### (iv) Matrix: \[ D = \begin{pmatrix} 1 & -3 & 3 \\ 2 & 2 & -4 \\ 2 & 0 & 2 \end{pmatrix} \] **Step 1: Calculate the determinant.** \[ \text{det}(D) = 1 \cdot \text{det}\begin{pmatrix} 2 & -4 \\ 0 & 2 \end{pmatrix} - (-3) \cdot \text{det}\begin{pmatrix} 2 & -4 \\ 2 & 2 \end{pmatrix} + 3 \cdot \text{det}\begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} \] Calculating the 2x2 determinants: \[ \text{det}\begin{pmatrix} 2 & -4 \\ 0 & 2 \end{pmatrix} = (2)(2) - (-4)(0) = 4 \] \[ \text{det}\begin{pmatrix} 2 & -4 \\ 2 & 2 \end{pmatrix} = (2)(2) - (-4)(2) = 4 + 8 = 12 \] \[ \text{det}\begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} = (2)(0) - (2)(2) = -4 \] Thus, \[ \text{det}(D) = 1 \cdot 4 + 3 \cdot 12 + 3 \cdot (-4) = 4 + 36 - 12 = 28 \] **Step 2: Since the determinant is non-zero, find the inverse.** Follow the same steps as before to find the adjoint and then the inverse. ### (v) Matrix: \[ E = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & -2 \\ 1 & 2 & -1 \end{pmatrix} \] **Step 1: Calculate the determinant.** Using the determinant formula for 3x3 matrices: \[ \text{det}(E) = 1 \cdot \text{det}\begin{pmatrix} -1 & -2 \\ 2 & -1 \end{pmatrix} - 2 \cdot \text{det}\begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} + 1 \cdot \text{det}\begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \] Calculating the 2x2 determinants: \[ \text{det}\begin{pmatrix} -1 & -2 \\ 2 & -1 \end{pmatrix} = (-1)(-1) - (-2)(2) = 1 + 4 = 5 \] \[ \text{det}\begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} = (1)(-1) - (-2)(1) = -1 + 2 = 1 \] \[ \text{det}\begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} = (1)(2) - (-1)(1) = 2 + 1 = 3 \] Thus, \[ \text{det}(E) = 1 \cdot 5 - 2 \cdot 1 + 1 \cdot 3 = 5 - 2 + 3 = 6 \] **Step 2: Since the determinant is non-zero, find the inverse.** Again, follow the same steps to find the adjoint and then the inverse. ### (vi) Matrix: \[ F = \begin{pmatrix} 4 & -2 & -1 \\ 1 & 1 & -1 \\ -1 & 2 & 4 \end{pmatrix} \] **Step 1: Calculate the determinant.** Using the determinant formula for 3x3 matrices: \[ \text{det}(F) = 4 \cdot \text{det}\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} - (-2) \cdot \text{det}\begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} - 1 \cdot \text{det}\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} \] Calculating the 2x2 determinants: \[ \text{det}\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix} = (1)(4) - (-1)(2) = 4 + 2 = 6 \] \[ \text{det}\begin{pmatrix} 1 & -1 \\ -1 & 4 \end{pmatrix} = (1)(4) - (-1)(-1) = 4 - 1 = 3 \] \[ \text{det}\begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix} = (1)(2) - (1)(-1) = 2 + 1 = 3 \] Thus, \[ \text{det}(F) = 4 \cdot 6 + 2 \cdot 3 - 3 = 24 + 6 - 3 = 27 \] **Step 2: Since the determinant is non-zero, find the inverse.** Follow the same steps to find the adjoint and then the inverse.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Are the following matrices invertible ? |{:(2,-3),(1,4):}| (ii) |{:(7,0),(3,1):}| (iii) |{:(1,-2,-3),(1,-3,-4),(1,-4,-5):}| (iv) |{:(2,3,-1),(0,1,4),(-5,0,-2):}| (v) |{:(0,1,2),(1,2,3),(3,1,1):}|

Find the inverses of the following matrices (if they exist) : (1) {:((1,3),(2,7)):}" "(2) {:((2,1),(7,4)):}" "(3) {:((1,-1),(2,3)):}" "(4) {:((3,-10),(2,-7)):}

Find the transpose of each of the following matrices : (i) [(5),(1/2),(-1)] (ii) [(1,-1),(2,3)] (iii) [(-1,5,6),(sqrt(3),5,6),(2,3,-1)] .

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Find the inverse of each of the matrices given below : [(2,-1,4),(-3,0,1),(-1,1,2)]

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

show that (i) [{:(5,-1),(6,7):}][{:(2,3),(3,4):}]ne[{:(2,3),(3,4):}][{:(5,-1),(6,7):}] (ii) [{:(1,2,3),(0,1,0),(1,1,0):}][{:(-1,1,0),(0,-1,1),(2,3,4):}] ne[{:(-1,1,0),(0,-1,1),(2,3,4):}][{:(1,2,3),(0,1,0),(1,1,0):}]

Find the octant in which the following points lie : (i) (2,3,-5) (ii) (-3,1,4) (iii) (-1,-1,2) (iv) (1,1,3) (v) (-5,-4,-1) (vi) (4,-1,2)

If A=[(1,-1,0),(2,3,4),(0,1,2)] and B =[(2,2,-4),(-4,2,-4),(2,-1,5)] , then :