Home
Class 12
MATHS
Find the inverse matrix of the matrix A=...

Find the inverse matrix of the matrix `A=|{:(cosx,-sinx,0),(sinx,cosx,0),(0,0,1):}|`

Text Solution

Verified by Experts

The correct Answer is:
`[{:(cosx,sinx,0),(-sinx,cosz,0),(0,0,1):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,0,1):}] =f(x), then A^(-1) is equal to

If F(x)=[{:(cosx,-sinx,0),(six,cosx,0),(0,0,1):}] , show that F(x).F(y)=F(x+y).

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] Show that F(x)F(y)=F(x+y)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

∫0^(π/2) (sinx−cosx) dx

int_(0)^(2pi)(sinx+cosx)dx=

4sinxcosx+2sinx+2cosx+1=0