Home
Class 12
MATHS
If A=|{:(1,2,2),(2,1,2),(2,2,1):}|, then...

If `A=|{:(1,2,2),(2,1,2),(2,2,1):}|`, then show that `A^(2)-4A-5I_(3)=0`. Hemce find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 - 4A - 5I_3 = 0 \) and then find \( A^{-1} \). Let's go through the steps systematically. ### Step 1: Define the Matrix A The matrix \( A \) is given as: \[ A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( (1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2) = 1 + 4 + 4 = 9 \) - \( (1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1) = 2 + 4 + 2 = 8 \) - Second row: - \( (2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2) = 2 + 2 + 4 = 8 \) - \( (2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2) = 4 + 1 + 4 = 9 \) - \( (2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1) = 4 + 2 + 2 = 8 \) - Third row: - \( (2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2) = 2 + 4 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2) = 4 + 2 + 2 = 8 \) - \( (2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1) = 4 + 4 + 1 = 9 \) Thus, we have: \[ A^2 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} \] ### Step 3: Calculate \( 4A \) Next, we calculate \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} \] ### Step 4: Calculate \( 5I_3 \) The identity matrix \( I_3 \) is: \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 5I_3 = 5 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] ### Step 5: Substitute into the Equation Now we substitute into the equation \( A^2 - 4A - 5I_3 = 0 \): \[ A^2 - 4A - 5I_3 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} - \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] Calculating this gives: \[ = \begin{pmatrix} 9 - 4 - 5 & 8 - 8 - 0 & 8 - 8 - 0 \\ 8 - 8 - 0 & 9 - 4 - 5 & 8 - 8 - 0 \\ 8 - 8 - 0 & 8 - 8 - 0 & 9 - 4 - 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] Thus, we have shown that: \[ A^2 - 4A - 5I_3 = 0 \] ### Step 6: Find \( A^{-1} \) From the equation \( A^2 - 4A - 5I_3 = 0 \), we can rearrange it to find \( A^{-1} \): \[ A^2 - 4A = 5I_3 \implies A(A - 4I_3) = 5I_3 \] Multiplying both sides by \( \frac{1}{5} \): \[ \frac{1}{5} A(A - 4I_3) = I_3 \] Thus, \[ A^{-1} = \frac{1}{5}(A - 4I_3) \] Calculating \( A - 4I_3 \): \[ A - 4I_3 = \begin{pmatrix} 1 - 4 & 2 & 2 \\ 2 & 1 - 4 & 2 \\ 2 & 2 & 1 - 4 \end{pmatrix} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \] Finally, we have: \[ A^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} \] ### Summary We have shown that \( A^2 - 4A - 5I_3 = 0 \) and found: \[ A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{2}{5} & -\frac{3}{5} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0

If A=|(1,2,2),(2,1,2),(2,2,1)|, verifty that A^2-4A-5I-5I=0

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , prove that A^(2)-4A-5I=O and hence, obtain A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)