Home
Class 12
MATHS
If A=|{:(1,4,5),(3,2,6),(0,1,0):}|, then...

If `A=|{:(1,4,5),(3,2,6),(0,1,0):}|`, then evaluate A. (adj. A).

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( A \cdot \text{adj}(A) \) for the matrix \[ A = \begin{pmatrix} 1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0 \end{pmatrix} \] we will follow these steps: ### Step 1: Find the Determinant of A The determinant of a 3x3 matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is calculated as: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): \[ \text{det}(A) = 1(2 \cdot 0 - 6 \cdot 1) - 4(3 \cdot 0 - 6 \cdot 0) + 5(3 \cdot 1 - 2 \cdot 0) \] Calculating this gives: \[ \text{det}(A) = 1(0 - 6) - 4(0) + 5(3) = -6 + 0 + 15 = 9 \] ### Step 2: Find the Matrix of Cofactors The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the matrix obtained by deleting the \( i \)-th row and \( j \)-th column. Calculating the cofactors: 1. \( C_{11} = \text{det} \begin{pmatrix} 2 & 6 \\ 1 & 0 \end{pmatrix} = (2 \cdot 0 - 6 \cdot 1) = -6 \) 2. \( C_{12} = -\text{det} \begin{pmatrix} 3 & 6 \\ 0 & 0 \end{pmatrix} = 0 \) 3. \( C_{13} = \text{det} \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix} = (3 \cdot 1 - 2 \cdot 0) = 3 \) 4. \( C_{21} = -\text{det} \begin{pmatrix} 4 & 5 \\ 1 & 0 \end{pmatrix} = - (4 \cdot 0 - 5 \cdot 1) = 5 \) 5. \( C_{22} = \text{det} \begin{pmatrix} 1 & 5 \\ 0 & 0 \end{pmatrix} = 0 \) 6. \( C_{23} = -\text{det} \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} = - (1 \cdot 1 - 4 \cdot 0) = -1 \) 7. \( C_{31} = \text{det} \begin{pmatrix} 4 & 5 \\ 2 & 6 \end{pmatrix} = (4 \cdot 6 - 5 \cdot 2) = 24 - 10 = 14 \) 8. \( C_{32} = -\text{det} \begin{pmatrix} 1 & 5 \\ 3 & 6 \end{pmatrix} = - (1 \cdot 6 - 5 \cdot 3) = - (6 - 15) = 9 \) 9. \( C_{33} = \text{det} \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix} = (1 \cdot 2 - 4 \cdot 3) = 2 - 12 = -10 \) Thus, the cofactor matrix is: \[ C = \begin{pmatrix} -6 & 0 & 3 \\ 5 & 0 & -1 \\ 14 & 9 & -10 \end{pmatrix} \] ### Step 3: Find the Adjoint of A The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{pmatrix} -6 & 5 & 14 \\ 0 & 0 & 9 \\ 3 & -1 & -10 \end{pmatrix} \] ### Step 4: Calculate \( A \cdot \text{adj}(A) \) Now we will multiply \( A \) by \( \text{adj}(A) \): \[ A \cdot \text{adj}(A) = \begin{pmatrix} 1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -6 & 5 & 14 \\ 0 & 0 & 9 \\ 3 & -1 & -10 \end{pmatrix} \] Calculating the entries: 1. First row: - \( 1 \cdot -6 + 4 \cdot 0 + 5 \cdot 3 = -6 + 0 + 15 = 9 \) - \( 1 \cdot 5 + 4 \cdot 0 + 5 \cdot -1 = 5 + 0 - 5 = 0 \) - \( 1 \cdot 14 + 4 \cdot 9 + 5 \cdot -10 = 14 + 36 - 50 = 0 \) 2. Second row: - \( 3 \cdot -6 + 2 \cdot 0 + 6 \cdot 3 = -18 + 0 + 18 = 0 \) - \( 3 \cdot 5 + 2 \cdot 0 + 6 \cdot -1 = 15 + 0 - 6 = 9 \) - \( 3 \cdot 14 + 2 \cdot 9 + 6 \cdot -10 = 42 + 18 - 60 = 0 \) 3. Third row: - \( 0 \cdot -6 + 1 \cdot 0 + 0 \cdot 3 = 0 + 0 + 0 = 0 \) - \( 0 \cdot 5 + 1 \cdot 0 + 0 \cdot -1 = 0 + 0 + 0 = 0 \) - \( 0 \cdot 14 + 1 \cdot 9 + 0 \cdot -10 = 0 + 9 + 0 = 9 \) Thus, we have: \[ A \cdot \text{adj}(A) = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} = 9I \] where \( I \) is the identity matrix. ### Final Answer \[ A \cdot \text{adj}(A) = 9I \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A= [{:(1,0,3),(2,1,1),(0,0,2):}] , then the value of |adj(adj A) | is

If A =[{:(3,,-3,,4),(2,,-3,,4),(0,,-1,,1):}] , then adj (adj A) is

If A = {:((1,-1,2),(3,0,-2),(1,0,3)):} , verify that A (adj A) = |A|* I .

If A =[{:(2,0,0),(0,1,0),(0,0,1):}] then adj(A) =

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If A=[[1,2,3],[2,3,4],[0,0,2]] then the value of adj(adjA) is-

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If for a matrix A , absA=6 and adj A={:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

If A is a square matrix such that A(adj A)=[(4,0,0),(0,4,0),(0,0,4)] , then (|adj (adj A)|)/(|adj A|) is equal to