Home
Class 12
MATHS
If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}|, th...

If `A=|{:(1,1,1),(1,2,-3),(2,-1,3):}|`, then show that A. (ajd.A)= (adj.A)A.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4e|4 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4c|7 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=[{:(1, 1, 1),(1, 2, "-3"),(2,"-1",3):}] , then adj A is

If A = [(1,1,1),(1,2,-3),(2,-1,3)] then | adj A| =

If A={:[(1,2,-1),(-1,2,2),(2,-1,1)],:} then : |adj(adj.A)|=

If A={:[(2,-1,1),(1,2,1),(-1,1,3)]:}" then :"|adj(adjA)|=

If A = {:((1,-1,2),(3,0,-2),(1,0,3)):} , verify that A (adj A) = |A|* I .

If A=[{:(1,2,3),(2,3,2),(3,3,4):}] , find adj.A

If A =[{:(3,,-3,,4),(2,,-3,,4),(0,,-1,,1):}] , then adj (adj A) is

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is