Home
Class 12
MATHS
If xneynez" and " |{:(x,x^(2),1+x^(3)),(...

If `xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0,` then xyz =

A

0

B

-1

C

-2

D

-3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we start with the determinant: \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1 + x^3 & 1 + y^3 & 1 + z^3 \end{vmatrix} \] We know that if the determinant \(D = 0\), then the rows of the determinant are linearly dependent. ### Step 1: Expand the determinant We can expand the determinant using the properties of determinants. The third row can be rewritten as: \[ 1 + x^3 = 1 + x^3, \quad 1 + y^3 = 1 + y^3, \quad 1 + z^3 = 1 + z^3 \] Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ 1 & 1 & 1 \\ x^3 & y^3 & z^3 \end{vmatrix} \] ### Step 2: Use properties of determinants We can perform row operations to simplify the determinant. Subtract the first row from the third row: \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 - x & y^3 - y & z^3 - z \end{vmatrix} \] ### Step 3: Factor the third row Notice that \(x^3 - x = x(x^2 - 1) = x(x - 1)(x + 1)\). Similarly for \(y\) and \(z\): \[ D = \begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x(x - 1)(x + 1) & y(y - 1)(y + 1) & z(z - 1)(z + 1) \end{vmatrix} \] ### Step 4: Factor out common terms Now we can factor out \(x\), \(y\), and \(z\) from the third row: \[ D = xyz \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ (x - 1)(x + 1) & (y - 1)(y + 1) & (z - 1)(z + 1) \end{vmatrix} \] ### Step 5: Set the determinant to zero Since \(D = 0\), we have: \[ xyz \cdot \text{(some determinant)} = 0 \] Since \(x\), \(y\), and \(z\) are not equal, the only solution is: \[ xyz = 0 \] ### Conclusion Thus, we conclude that: \[ xyz = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0 , show that : (i) 1+xyz=0 (ii) xyz=-1

Given that xyz = -1 , the value of the determinant |(x,x^(2),1 +x^(3)),(y,y^(2),1 + y^(3)),(z,z^(2),1 +z^(3))| is

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If x!=y!=z and |x^(2)1+x^(3)yy^(2)1+y^(3)zz^(2)1+z^(3)|=0, then prove that xyz=-1

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0 then show that 1+xyz=0]|

If x,y,z are different and Delta=det[[x,x^(2),1+x^(3)y,y^(2),1+y^(3)z,z^(2),1+z^(3)]]=0, then prove that 1+xyz=0,

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

If x,y,z are different and Delta=det[[x,x^(2),x^(3)-1y,y^(2),y^(3)-1z,z^(2),z^(3)-1]]=0, then using properties of determinants,show that xyz=1

If |(x^(n),x^(n+2),x^(n+3)),(y^(n),y^(n+2),y^(n+3)),(z^(n),z^(n+2),z^(n+3))| = (x -y) (y -z) (z -x) ((1)/(x) + (1)/(y) + (1)/(z)) , then n equals