Home
Class 12
MATHS
|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),...

`|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),(-10,12,2)|=0`

A

0

B

`12 cos^(2)x-10sin^(2)x`

C

`12sin^(2)x-10cos^(2)x-2`

D

`10sin2x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4f|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|(sin^(2)x, cos^(2)x,1),(cos^(2)x,sin^(2)x,1),(-10,12,2)| , then intf(x)dx=

|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=

sin ^ (2) x, cos x ^ (2) x, 1cos ^ (2) x, sin ^ (2) x, 1-10,12,2] | = 0

(sin 2x)/(1+cos 2x) =

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then