Home
Class 12
MATHS
Evalute the determinants in queations 1 ...

Evalute the determinants in queations 1 and 2 :
(i) `[{:(costheta,-sintheta),(sintheta,costheta):}|`
(ii) `|{:(x^(2),-x+1,x-1),(,x+1,x+1):}|`

Text Solution

Verified by Experts

(i) `[{:(costheta,-sintheta),(sintheta,costheta):}]=cos^(2)theta-(-0sin^(2)theta)`
`cos^(2)theta+sin^(2)theta=1`
(ii) `|{:(x^(2),-x+1,x-1),(,x+1,x+1):}|`
`(x^(2)-x+1)(x+1)-(x+1)(x-1)`
`=(x+1)(x^(2)-x+1-1)`
`=x^(3)+x^(2)-2x^(2)-2x+2x+2`
`=x^(3)-x^(2)2`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4g|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

(1+costheta)/(sintheta)=?

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

If {:A=[(costheta,-sintheta),(sintheta,costheta)]:},"then" A^T+A=I_2 , if

Evaluate the determinants in (i) |costheta-sinthetasinthetacostheta| (ii) |x^2-x+1x-1x+1x+1|

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

Simplify (1-costheta)/sintheta

Simplify (1-costheta)/sintheta

If sintheta+costheta=x then sintheta-costheta=?

If {:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim_(ntooo) 1/nA^n is