Home
Class 12
MATHS
Evalute the determinants in queations 1 ...

Evalute the determinants in queations 1 and 2 :
If `A=[{:(1,2),(4,2):}]`, then show that |2A|=4|A|.

Text Solution

AI Generated Solution

To evaluate the determinant and show that |2A| = 4|A|, we will follow these steps: ### Step 1: Define the Matrix A Given the matrix \( A \): \[ A = \begin{pmatrix} 1 & 2 \\ 4 & 2 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4g|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Evalute the determinants in queations 1 and 2 : [{:(2,4),(-5,-1):}]

Evalute the determinants in queations 1 and 2 : If A=|{:(1,0,1),(0,1,2),(0,0,4):}|

If A=[[1,24,2]], then show that |2A|=4|A|

" 2.If "A=|[1,2],[4,2]|," then show that "|2A|=2|A|

Evaluate the determinants in |2 4-5-1|

If A=|[1,2],[3,2]| ,then show that |2A|=4|A|

If A=[{:(2,1,1),(1,2,1),(1,1,2):}] , then show that : |4A|=64|A| .

Evalute the determinants in queations 1 and 2 : If |{:(x,2),(18,x):}|=|{:(6,2),(18,6):}| , then x is equal to : (a) 6 (b) +-6 ( c) -6 0

Evalute the determinants in queations 1 and 2 : Find the values of x, if (i) |{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}| (ii) |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|

Evalute the determinants in queations 1 and 2 : (i) [{:(costheta,-sintheta),(sintheta,costheta):}| (ii) |{:(x^(2),-x+1,x-1),(,x+1,x+1):}|