Home
Class 12
MATHS
Evalute the determinants in queations 1 ...

Evalute the determinants in queations 1 and 2 : If `A=|{:(1,0,1),(0,1,2),(0,0,4):}|`

Text Solution

Verified by Experts

`A=|{:(1,0,1),(0,1,2),(0,0,4):}|`
`rArr" "A=|{:(1,0,1),(0,1,2),(0,0,4):}|=1|{:(1,2),(0,4):}|-0-0=4-0=4`
`rArr" "27|A|=27xx4=108`
Now, `3A=|{:(3,0,3),(0,3,6),(0,0,12):}|`
`|3A|=|{:(3,0,3),(0,3,6),(0,0,12):}|=3|{:(3,6),(0,12):}|-0+0`
=3(36-0)108`
`therefore" "|A|=27|A|`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.2|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4g|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Evalute the determinants in queations 1 and 2 : [{:(2,4),(-5,-1):}]

Evalute the determinants in queations 1 and 2 : If |{:(x,2),(18,x):}|=|{:(6,2),(18,6):}| , then x is equal to : (a) 6 (b) +-6 ( c) -6 0

Evalute the determinants in queations 1 and 2 : If A=[{:(1,2),(4,2):}] , then show that |2A|=4|A|.

Evalute the determinants in queations 1 and 2 : Find the values of x, if (i) |{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}| (ii) |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|

Evalute the determinants in queations 1 and 2 : (i) [{:(costheta,-sintheta),(sintheta,costheta):}| (ii) |{:(x^(2),-x+1,x-1),(,x+1,x+1):}|

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

Evaluate the following determinants by two method : |{:(1,2,4),(-1,3,0),(4,1,0):}|

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then