Home
Class 12
MATHS
Using the property of determinants and w...

Using the property of determinants and without expanding, prove that:`|1b c a(b+c)1c a b(c+a)1a b x(a+b)|=0`

Text Solution

Verified by Experts

`L.H.S.=|{:(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b)):}|=|{:(1,bc,ab+ca+bc),(1,ca,ba+ab+ca),(1,ab,ca+be+ab):}|`
`(C_(3)toC_(3)+C_(2))`
`=(ab+bc+ca)|{:(1,bc,1),(1,ca,1),(1,ab,1):}|`
`=(ab+bc+ca)xx0" "(because C_(1)" and "C_(3)" are same)`
= 0 = R.H.S
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding,prove that: det[[1,bc,a(b+c)1,ca,b(c+a)1,ab,x(a+b)]]=0

Using the property of determinants and without expanding,prove that: det[[0,a,-b-a,0,-cb,c,0]]=0

Using the property of determinants and without expanding,prove that: det[[a-b,b-c,c-ab-c,c-a,a-bc-a,a-b,b-c]]=0

Using the property of determinants and without expanding,prove that: det[[x,a,x+ay,b,y+bz,c,z+c]]=0

Using the property of determinants and without expanding,prove that: det[[-a^(2),ab,acba,b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(x,a,x+a),(y,b,y+b),(z,c,z+c):}|=0

Show without expanding at any stage that: | [1,bc, a(b+c)],[1,ca, b(c+a)],[1,ab, c(a+b)]|=0

Without expanding prove that: |[1,a,a^(2)-bc],[1,b,b^(2)-ca],[1,c,c^(2)-ab]|=0