Home
Class 12
MATHS
Using the property of determinants and w...

Using the property of determinants and without expanding, prove that:`|b+c q+r y+z c+a r+p z+x a+b p+q x+y|=2|a p x b q y c r z|`

Text Solution

Verified by Experts

`|{:(b+c,q+r,y+z),(c+a,r+p,z+x),(a+b,p+q,x+y):}|=2|{:(2(a+b+c),2(p+q+r),2(x+y+z)),(c+a,r+p,z+x),(a+b,p+q,x+y):}|`
`(R_(1)toR_(1)+R_(2)+R_(3))`
`=2|{:(a+b+c,p+q+r,x+y+z),(c+a,r+p,z+x),(a+b,p+q,x+y):}|`
`=2|{:(a+b+c,p+q+r,x+y+z),(-b,-q,-y),(-c,-r,-z):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=2|{:(a,p,x),(-b,-q,-y),(-c,-r,-z):}|" "(R_(1)toR_(1)+R_(2)+R_(3))`
`=2(-1)(-1)|{:(a,p,x),(b,q,y),(c,r,z):}|=2|{:(a,p,x),(b,q,y),(c,r,z):}|`
= R.H.S
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Without expanding, prove that |a b c x y z p q r|=|x y z p q r a b c|=|y b q x a p z c r|

Use the properties of determinant and without expanding prove that |{:(b+c,q+r,y+z),(c+a,r+p,z+x),(a+b,p+q,x+y):}| = 2 |{:(a,p,x),(b,q,y),(c,r,z):}| .

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(x,a,x+a),(y,b,y+b),(z,c,z+c):}|=0

Using properties of determinants, prove that |(b+c,q+r,y+z),(c+a,r+p,z+x),(c+b,p+q,x+y)|=2|(a,p,x),(b,q,y),(c,r,z)|

Show that: |b+cc+a a+b q+r r+p p+q y+z z+xx+y|=2|a b c p q r x y z|

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

Without expansion, prove the following: |(a+b, b+c, c+a),(p+q, q+r, r+ p),(x+y, y+z, z+x)|=2|(a,b,c),(p,q,r),(x,y,z)|

SECTION MULTIPLE CORRECT CHOICE TYPE Example 41 Let a, b, c , p, q be five different non-zero real numbers and x, y, z be three numbers satisfying the system of equations a a-p aq then (a) x + y + z = a + b + c-p-q abc (b) x = pq 0 in (c) y = (a-p)(h-p)(c-p) p(p-q) (a-q)(b-q)(c-q) aq-p) (d) z = b.

Prove that: |[b+c, c+a, a+b],[q+r, r+p, p+q],[y+z, z+x, x+y]|=2|[a,b,c],[p,q,r],[x,y,z]|