Home
Class 12
MATHS
Using the property of determinants and w...

Using the property of determinants and without expanding, prove that:`|-a^2a b a c b a b^2b cc a c b-c^2|=4a^2b^2c^2`

Text Solution

Verified by Experts

`|{:(-a^(2),ab,ac),(ba,-b^(2),ac),(ca,cb,-c^(2)):}|=abc|{:(-a,b,c),(a,-b,c),(a,b,-c):}|`
` =a^(2)b^(2)c^(2)|{:(-1,1,1),(a,-b,c),(a,b,-c):}|`
`=a^(2)b^(2)c^(2)|{:(-1,1,1),(0,-1,1),(2,1,-1):}|(C_(1)toC_(1)+C_(2))`
`=a^(2)b^(2)c^(2).2|{:(1,1),(-1,1):}|`
(Expanding along `C_(1)`)
`=a^(2)b^(2)c^(2)(1+1)=4a^(2)b^(2)c^(2)=R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding,prove that: det[[-a^(2),ab,acba,b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

Using the property of determinants and without expanding,prove that: det[[a-b,b-c,c-ab-c,c-a,a-bc-a,a-b,b-c]]=0

Using the property of determinants and without expanding,prove that: det[[1,bc,a(b+c)1,ca,b(c+a)1,ab,x(a+b)]]=0

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(x,a,x+a),(y,b,y+b),(z,c,z+c):}|=0

Using properties of determinants,prove that det[[-a^(2),ab,acba,-b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0