Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:(i) `|1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a)`(ii) `|1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)`

Text Solution

Verified by Experts

`|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(0,a-c,a^(2)-c^(2)),(0,b-c,b^(2)-c^(2)),(1,c,c^(2)):}|" "({:(R_(1)toR_(1)-R_(3)),(R_(2)toR_(2)-R_(3)):})`
`=(a-c)(b-c)|{:(0,a-c,a^(2)-c^(2)),(0,b-c,b^(2)-c^(2)),(1,c,c^(2)):}|`
`=(a-c)(b-c)|{:(0,a-c,a^(2)-c^(2)),(0,b-c,b^(2)-c^(2)),(1,c,c^(2)):}|`
(Expending along `C_(1)`)
` =-(c-a)(b-c)(b+c-a-c) `
`=-(b-c)(c-a)(b-a)`
`=(a-b)(b-c)(c-a)=R.H.S.`
(ii) `|{:(1,1,1),(a,b,c),(a^(3),b^(3),c^(3)):}|=|{:(0,0,1),(a-b,b-c,c),(a^(3)-b^(3),b^(3)-c^(3),c^(3)):}|" "({:(C_(1)toC_(1)-C_(2)),(C_(2)toC_(2)-C_(3)):})`
`=(a-b)(b-c)|{:(0,0,1),(1,1,c),(a^(2)+b^(2)+ab,b^(2)+c^(2)+cb,c^(3)):}|`
`=(a-b)(b-c).1|{:(1,1),(a^(2)+b^(2)+ab,b^(2)+c^(2)+bc):}|" "("Expenbding along "{R_(1))`
`=(a-b)(b-c)(b^(2)+c^(2)+bc-a^(2)-b^(2)-ab)`
`=(a-b)(b-c)[c^(2)-a^(2)+bc-ab]`
`=(a-b)(b-c)(b-c)[(c-a)(c+a)+b(c-a)]`
`=(a-b)(b-c)(c-a)(c+a+b)`
`=(a-b)(b-c)(c-a)(a+b+c)`
=R.H.S
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0

Using properties of determinant show that: det[[1,a,-bc1,b,-ca1,c,-ab]]=(a-b)(b-c)(c-a)det[[1,b,-ca1,c,-ab]]=(a-b)(b-c)(c-a)

Prove that =|1 1 1a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Prove that |{:(1, 1, 1),(a, b, c),(a^(3), b^(3), c^(3)):}|=(a-b)(b-c)(c-a)(a+b+c)