Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:(i) `|a-b-c2a2a2bb-c-a2b2c2cc-a-b|=(a+b+c)^3` (ii) `|x+y+2z x y z y+z+2x y z x z+x+2y|=2(x+y+z)^3`

Text Solution

Verified by Experts

`|{:(a-b-c,2a,2a),(ab,b-c-a,2a),(2c,2c,c-a-b):}|=|{:(-(a+b+c),0,2a),(a+b+v,-(a+b+c),ab),(0,a+b+c,c-a-b):}|`
`(C_(1)toC_(1)-C_(2),C_(2)toC_(2)-C_(3))`
`=(a+b+c)^(2)|{:(-1,0,2a),(0,-1,2b+2a),(0,1,c-a-b):}|`
`(R_(2)toR_(2)+R_(1))`
`=(a+b+c)^(2).(-1)|{:(-1,2b+2a),(1,c-a-b):}|`
(Expanding along `C_(1)`)
`=(a+b+c)^(2)(-1)(-c+a+b-2a-ab)`
`=(a+b+c)^(2)(-1)(-a-b-c)`
`=(a+b+c)^(2)(a+b+c)`
`=(a+b+c)=R.H.S.`
`|{:(x+y+2s,x,y),(z,y+z+2z,y),(z,x,z+x+2y):}|=|{:(2x+2y+2z,x,y),(2x+2y+2z,y+z+2x,y),(2x+2y+2z,z,z+x+2y):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`=(2x+2y+2z)|{:(1,x,y),(1,y+z+2x,u),(1,x,z+x+2y):}|`
`=2(x+y+z)|{:(1,x,y),(1,y+z+2x,0),(0,0,x+y+z):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=2(x+y+z).1|{:(x+y+z,0),(0,x+y+z):}|`
(Expanding along `C_(1)`)
`=2(x+y+z)^(3)=R.H.S`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3

Show that |a b c a+2x b+2y c+2z x y z|=0

Show that |{:(x,y,z),(2x+2a,2y+2b,2z+2c),(a,b,c):}|=0

Prove that Det [[x + y + 2z, x, y], [z, y + z + 2x, y], [z, x, z + x + 2y]] = 2 (x + y + z) ^ 3

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

Evaluate each of the following algebraic expressions for x=1,\ y=-1, z=2,\ a=-2,\ b=1,\ c=-2: (i) a x+b y+c z (ii) a x^2+b y^2-c z^2 (iii) a x y+b y z+c x y

If x+y+z=0 prove that |a x b y c z c y a z b x b z c x a y|=x y z|a b cc a bb c a|

Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)