Home
Class 12
MATHS
Using properties of determinants, pro...

Using properties of determinants, prove the following: `|1xx^2x^2 1xxx^2 1|=(1-x^3)^2`

Text Solution

Verified by Experts

`L.H.S.=|{:(1,x,x^(2)),(x^(2),1,x),(x,x^(2),1):}|=|{:(1+x+x^(2),x,x^(2)),(x^(2)+1+x,1,x),(x+x^(2)+1,x^(2),1):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`=(1+x+x^(2))|{:(1,x,x^(2)),(1,1,x),(1,x^(2),1):}|`
`=(1+x+x^(2))|{:(1,x,x^(2)),(0,1-x,x-x^(2)),(0,x^(2)-x,1-x^(2)):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=(1+x+x^(2))|{:(1,x,x^(2)),(0,1-x,x(1-x)),(0,-x(1-x),(1-x)(1+x)):}|`
`=(1+x+x^(2))(1-x)(1-x)|{:(1,x,x^(2)),(0,1,x),(0,-x,1+x):}|`
`=(1+x+x^(2))(1-x).1|{:(1,x),(-x,1+x):}|`
`=(1+x+x^(2))(1-x)^(2)(1+x+x^(2))`
`=[(1+x+x^(2))(1-x)^(2)]=(1-x^(3))^(2)`
R.H.S.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following: |[1,x,x^2],[x^2, 1,x],[x,x^2,1]|=(1-x^3)^2

Using properties of determinants, prove the following: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]|=(1+pxyz)(x-y)(y-z)(z-x)

Using properties of determinants,prove the following: det[[1,a,a^(2)a^(2),1,aa,a^(2),1]]=(1-a^(3))^(2)

By using properties of determinants.Show that: det[[1,x,x^(2)x^(2),1,xx,x^(2),1]]=(1-x^(3))^(2)

Using properties of determinants,prove the following det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)

Using properties of determinants,prove the following: det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)

Using properties of determinants,show that |1aa^(2)-bc1^(-2)-ca1^(^^2)-ab|=0

Using properties of determinants.Prove that |xx^(2)1+px^(3)yy^(2)1+py^(3)zz^(2)1+pz^(3)|=(1+pxyz)(x-y)(y-z)(z-x) where p is any scalar.

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

If f(x)=|a-10axa-1ax^(2)axa|, using properties of determinants,find the value of f(2x)-f(x)