Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:`|1+a^2-b^2 2a b-2b2a b1-a^2+b^2 2a2b-2a1-a^2-b^2|=(1+a^2+b^2)^3`

Text Solution

Verified by Experts

`|{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)+b^(2)):}|=|{:(1+a^(2)+b^(2),2ab,-2b),(2ab,1+a^(2)+b^(2),2ab),(b(1+a^(2)+b^(2)),-a(1+a^(2)+b^(2)),1+a^(2)+b^(2)):}|`
`(C_(1)toC_(1)-bC_(3),C_(2)toC_(2)+aC_(3))`
`=(1+a^(2)+b^(2))^(2)|{:(1,0,-2b),(0,1,2a),(b-a,1-a^(2),-b^(2)):}|`
`(C_(3)toC_(3)+2b.C_(1))`
`=(1+a^(2)+b^(2))^(2).1|{:(1,,2a),(-a,1-a^(2),+b^(2)):}|`
(Expanding along `R_(1)`)
`=(1+a^(2)+b^(2)+2a^(2))`
`=(1+a^(2)+b^(2))^(3)=R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

1+a^(2)-b^(2),2ab,-2b2ab,1-a^(2)+b^(2),2a2b,-2a,1-a^(2)-b^(2)]|=(1+a^(2)+b^(2))^(3)

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

By using properties of determinants.Show that: det[[a^(2)+1,ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=(1+a^(2)+b^(2)+b^(2))

|[1+a^(2)-b^(2),2ab,-2b],[2ab,1-a^(2)+b^(2),2a],[2b,-2a,1-a^(2)-b^(2)]| =

a a+b a+2b 10. Using properties of determinants, show that |[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^2(a+b)

Find the value |{:(1+a^(2)-b^(2),2ab,-2b),(2ab,1-a^(2)+b^(2),2a),(2b,-2a,1-a^(2)-b^(2)):}|

Show that |{:(1+a^(2)-b^(2),,2ab,,-2b),(2ab,,1-a^(2)+b^(2),,2a),(2b,,-2a,,1-a^(2)-b^(2)):}| = (1+a^(2) +b^(2))^(3)

The value of the determinant |{:(1+ a^(2) - b^(2),2 ab , - 2b),(2ab, 1 - a^(2) + b^(2), 2a),(2b , -2a , 1-a^(2) - b^(2)):}| is equal to

Solve the determinant using properties |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]| = (a+b+c)^3

If (a+b):(a-b)=1:5 then (a^2-b^2):(a^2+b^2)=