Home
Class 12
MATHS
Using properties of determinants, pro...

Using properties of determinants, prove the following: `|a^2a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2dot`

Text Solution

Verified by Experts

`|{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=abc|{:(a+1/a,b,c),(a,b+1/b,c),(a,b,c+1/c):}|`
`|{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,cb,c^(2)+1):}|=|{:(a^(2)+b^(2)+c^(2)+1,b^(2),c^(2)),(a^(2)+b^(2)+c^(2)+1,b^(2)+1,c^(2)),(a^(2)+b^(2)+c^(2)+1,b^(2),c^(2)+1):}|`
`(C_(1)toC_(1)+C_(2)+C_(3))`
`=(a^(2)+b^(2)+c^(2)+1)|{:(1,b^(2),c^(2)),(1,b^(2)+1,c^(2)),(1,b^(2),c^(2)+1):}|`
`=(a^(2)+b^(2)+c^(2)+1)|{:(1,b^(2),c^(2)),(0,1,0),(0,0,1):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=(1+a^(2)+b^(2)+c^(2)).1|{:(1,0),(0,1):}|`
(Expanding along `C_(1)`)
`=(1+a^(2)+b^(2)+c^(2))=R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.3|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.1|8 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

Using properties of determinants,prove the following: det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)

Using properties of determinants,prove the following det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Using properties of determinants, prove that following |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Using properties of determinants, prove that: |[b^2+c^2,a^2,a^2],[b^2,c^2+a^2,b^2],[c^2,c^2,a^2+b^2]|=4a^2b^2c^2

Using properties of determinants,prove that det[[-a^(2),ab,acba,-b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Using properties of determinants,prove the following : det[[a,a^(2),bcb,b^(2),cac,c^(2),ab]]=(a-b)(b-c)(c-a)(bc+ca+ab)

By using properties of determinants.Show that: det[[a^(2)+1,ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=(1+a^(2)+b^(2)+b^(2))

Using properties of determinant prove that |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)