Home
Class 12
MATHS
Varify A (adjA)=(adjA)A=|A| I [{:(2,...

Varify A (adjA)=(adjA)A=|A| I `[{:(2,3),(-4,-6):}]`

Text Solution

AI Generated Solution

To verify the equation \( A \cdot (\text{adj} A) = (\text{adj} A) \cdot A = |A| I \) for the given matrix \( A = \begin{pmatrix} 2 & 3 \\ -4 & -6 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ |A| = ad - bc \] For our matrix \( A = \begin{pmatrix} 2 & 3 \\ -4 & -6 \end{pmatrix} \): ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Verify A(adj.A)=(adj.A)A=|A|I : [{:(2,3),(-4,-6):}]

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(1,2,3),(0,5,0),(2,4,3):}]

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(2,1,5),(3,-2,-4),(-3,1,-2):}]

Verify A(adj.A)=(adj.A)A=|A|I : [{:(1,-1,2),(3,0,-2),(1,0,3):}]

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(1,-2,2),(2,3,5),(-2,0,1):}]

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(1,-1,2),(3,0,-2),(1,0,3):}]

If A=[cos alpha-sin alpha0sin alpha cos alpha0001], find adj A and verify that A(adjA)=(adjA)A=|A|I_(3)

If A is a 3times3 non-singular matrix and (adjA)= |A|^(x) ,|adj(adjA)|= |A|^(y) , |A^(-1)|=|A|^(z) ,then the value of x,y,z in descending order.

If A=([cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]), find adj.AA(adj.A)=(adj.A)A,=|A|I_(3)

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1...

    Text Solution

    |

  3. Varify A (adjA)=(adjA)A=|A| I [{:(2,3),(-4,-6):}]

    Text Solution

    |

  4. Varify A (adjA)=(adjA)A [{:(1,-1,2),(3,0,-2),(1,0,3):}]=

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in [[2, 1, 3],[ 4,-1,...

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=[3 2 7 5] and B=[6 7 8 9] , verify that (A B)^(-1)=B^(-1)A^(-1) .

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2 1 3]. Show that A^3-6A^2+5A+11 I=0. He...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |